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RL and Control

1. Marked TPP: a new setting



MTPP: a new setting for control & RL

Actions and feedback are
real-valued functions in
continuous time
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Actions and feedback Actions and feedback are
occur in discrete time asynchronous events

localized in continuous time



Example I: Viral marketing

Agent Environment
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Social media user

Followers’ Feed

Forbes
For Brands And PR: When Is The Best Time To Post On THE HUFFINGTON POST

Social Media?
The Best Times to Post on Social Media

When to post to maximize views or likes?
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posting intensity



Example Il: Spaced repetition

Agent Environment
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Review &
unsuccessful recall

Review &

Online learning
successful recall

platform

When to review to maximize recall probability?
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Example lll: Suppressing epidemics

Agent Environment
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Health policy

(Resource allocation) -

Population (social network)

Who to treat and when to reduce infections?
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RL & Control

2. Stochastic optimal control



Stochastic optimal control of SDEs with jumps

If the problem dynamics can be expressed
using SDEs with jumps:

al

Next, details on one
approach to the when to

post problem

Kim et al. 2018;

Policy is characterized by an intensity
function!



Broadcasters and feeds

B[N (1)[H(1)] = p(t)dt By E[dAM(O[H(1)]= () dt
+ *
- - A

| Broadcaster | AT pu(t)

Policy s | intensity function I
| (tweets / hour) |

Feed intensity function
(tweets / hour)

T .
Given a broadcaster i and M,i(t) = A" N(t) — AiNi(?)
her followers Vi () = 5 (t) — pi(t)
Feed due to other

broadcasters
[Zarezade et al., 2017 & 2018]
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Definition of visibility function

Visibility of broadcaster i at follower j
Position of the highest ranked tweet by
broadcaster i in follower j’s wall

M(

C

Feed
ranking

ri(t”’) =0

In general, the visibility
depends on the feed
ranking mechanism!

od stories

) Post by broadcaster u

B Post by other broadcasters
[Zarezade et al., 2017 & 2018]
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Visibility dynamics in a FIFO feed (l)

Ne\Vets
Reverse

chronological order
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rij(t+dt) = (ri; (1) + 1)dM;(8) (1 — dNi(¢)+ 0 + rig(E)(1 — dM;i(¢))(1 — dN;(2))
# *
Rank at t+dt Other broadcasters Bro ter i Nobody posts
post a story and posts a story and a story
broadcaster i does other broadcasters
not post do not post v
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[Zarezade et dl., 2017 & 2018]



Visibility dynamics in a FIFO feed (ll)

rij(t+dt) = (r45(t) + 1)dM;(t)(1 —dN;(t)4+ 0 + 7i5(t)(1 — dM;\(2)) (1 — dN4(t))

‘ Zero-one law dN;(t)dM;\;(t) = 0

drij(t) = —ri;(t) dN; (t) + dM;\ (¢) Stochastic
roi(t + dt)4— rii(t) Broadcasteri Other brﬁcasters dlfferentl?' e.quatlon
i “ posts a story posts a story (SDE) with jumps
I_ ________________________ 1
| OUR GOAL: :
: Optimize r;ft) over time, so that it is small, by controlling
[ . .
: dN;(t) through the intensity p;(t) |
_________________________ J

[Zarezade et al., 2017 & 2018]



Feed dynamics

t
We consider a () = \o(t) + @/ g(t — s)dN(s)
general intensity: —_
(e.g. Hawkes, Deterministic Stochastic
inhomogeneous Poisson) arbitrary intensity self-excitation

-[ AN (1) = N (1) + who(t) — wA*(B)] di + adNi(t)

[Zarezade et al., 2017 & 2018]

Jump stochastic
differential equation (SDE)



The when-to-post problem

TerrrVenalty NonoVsing loss
t

Optimization | minimize En, pr,)to,t;] [¢("‘(tf))

/u(t07tf] 0
problem
subject to u(t) >0 Vt € (to,ty],
Dynamics
defined by dr(t) = —r(t) dN(t) + dM(t) y

Jump SDEs dA(t) = [Ao(t) + wAo(t) — wA(t)] dt + cydfdde et al., 2017 & 2018]



Bellman’s Principle of Optimality

| Lemma. The optimal cost-to-go satisfies Bellman’s

I Principle of Optimality
[

1 J(r(t),A(t),t) = u(?zlsifdt] E[J(r(t+dt), \(t +dt),t +dt)] + £(r(t),u(t)) dt
\ :

‘ J(r(t + dt) At +dt), T+ dt)=J (r(t), At),t) + dJ (r(t), A1), 1)

0= min E[dJ(r(t), \(t),1)] + £(r(t), u(t)) dt

u(t,t+dt]
’ o _p(t) AN () +dM () |
Z&% _ DZ((% o) — AWML+ dM ()

Hamilton-Jacobi-Bellman (HJB) } Partial differential

. equationinJ
equation
g (with respect tor, A and t)
[Zarezade et al., 2017 & 2018]



Solving the HJB equation

Consider a quadratic loss

Er(t), u(t)) = 55(0) (1) + 5qud (1)

Favors some periods cAtnes TraAffs visibility and number
(e.g., times in which the follower is of broadcasted posts
online)

Then, it can be shown that the optimal intensity is:
w(t) = g~ [J(r(t), A(t),t) — J(0, A(t), t)]

= /s(t)/qr(t) « o0 depe\l‘::,\b-\\-\w‘.

(2
C“ﬂ 17

[Zarezade et al., 2017 & 2018]



The RedQueen algorithm

Consider s(t) = s ) u™(t) = (s/q)¥/2 r(t)

How do we sample the next time?

r(t)

Ai ~ exp( (s/q)1/2) t1+ A1 t2+ A2 t3+ A3 ta+ A4 miniti+ Ai

It only requires sampling M(t;) times!
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[Zarezade et al., 2017 & 2018]



Example: a broadcaster in Twitter

Significance:
followers’ retweets
per weekday
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True posts 40% lower! REDQUEEN

L (Trt)dt =698.04 4mp %[, F(t)dt =425.25 »

[Zarezade et al., 2017 & 2018]



RL & Control

3. Reinforcement learning
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Reinforcement learning of marked TPP

If the problem dynamics cannot be expressed
using SDEs with jumps or the objective is
intra

E> Next, details on one approach to gl
the when/what to post problem

with algorithmic ranking

Policy is characterized by an intensity function!
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Visibility dynamics are unknown

Proprietary
algorithmic ranking

N

cew tweets

Lesggyisibility

However, one may
have access to
quality metrics

Key idea:
Think of these metrics as rewards in a

reinforcement learning setting! .

[Upadhyay et al., 2018]



Broadcasters and feedback

t

[)A 0 — 9 ,”9
¢ wMark
0|l distribution
Intensity

Parametrized using RNNs

P = (\gm3)

We do not know the
feedback distribution but
we can sample’ fr_qm_it.;
pe S
[ \

\ = /

\ﬁ_’,

...ahd measure
(rewards) 23

[Upadhyay et al., 2018]



Policy gradient

We aim to maximize the average reward in a time

window [0, T]: J(0)
—_—
maximize K 4, () Frapt () \R*(T)]
Pael) |_'_l i L

Actions and Reward
environment are cymulative)
asynchronous!

It can be shown that the reinforce trick is valid,
i.e., we can compute the gradient and use SGD:

VoJ(0) = Eapnpty o) Frapsy,, () B (T) Ve log Po(Ar))
24

[Upadhyay et al., 2018]



Example: 100 broadcasters in Twitter

TPPRL REDQUEEN Karimi

ﬂ A Offline algorithm

RL: Optimal control:
It learns the It assumes feed in
feed ranking reverse chronological 25

[Upadhyay et al., 2018]



Many thanks!
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