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Outline of the Seminar

1. Intensity function
2. Basic building blocks
3. Superposition
4. Marks and SDEs with jumps

TEMPORAL POINT PROCESSES (TPPS): INTRO

MO D E LS & IN FE R E N C E
1. Modeling event sequences
2. Clustering event sequences
3. Capturing complex dynamics
4. Causal reasoning on event sequences
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3. Reinforcement learning
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MTPP: a new setting for control & RL

Actions and feedback 
occur in discrete time

Actions and feedback are 
real-valued functions in 

continuous time

Actions and feedback are 
asynchronous events 

localized in continuous time



Example I: Viral marketing
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Agent

Followers’ Feed

When to post to maximize views or likes?

…

Environment

Design (optimal) 
posting intensity

Marks (feedback) given 
by environment 

Social media user



Example II: Spaced repe//on
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Agent

When to review to maximize recall probability?

Environment

Design (optimal) 
reviewing intensities

Marks

Learner
Online learning 

plaForm

Review & 
successful recall

Review & 
unsuccessful recall



Example III: Suppressing epidemics
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Agent

Who to treat and when to reduce infections?

Environment

Design (op?mal) 
treatment intensi?es

Marks

Health policy

Population (social network)
(Resource allocation)
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RL & Control
1. Marked TPP: a new setting for control

2. Stochastic optimal control
3. Reinforcement learning



Stochas(c op(mal control of SDEs with jumps
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If the problem dynamics can be expressed 
using SDEs with jumps:

Optimal control of marked temporal 
point processes

[Zarezade et al., 2017, 2018; Tabibian et al., 2017; Kim et al. 2018; 
Wang et al., 2018]

Key idea: 
Policy is characterized by an intensity 
function!

HJB equation

Variational inference [Wang et al., 2017]

Next, details on one 
approach to the when to 

post problem
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Broadcasters and feeds

t

N(t)

Broadcaster 
intensity function 

(tweets / hour)

t

M(t)

Feed  intensity function 
(tweets / hour)

Given a broadcaster i and 
her followers

Feed due to other 
broadcasters

Policy

[Zarezade et al., 2017 & 2018]
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Definition of visibility function

rij(t) = 0

Post by broadcaster u

Post by other broadcasters

Ra
nk

ed
 s

to
rie

s

Feed
ranking

Visibility of broadcaster i at follower j
Position of the highest ranked tweet by 

broadcaster i in follower j’s wall

O
ld

er
 tw

ee
ts

rij(t’) = 4 rij(t’’) = 0

…. .

t

M(t)

In general, the visibility 
depends on the feed 
ranking mechanism!

[Zarezade et al., 2017 & 2018]
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Visibility dynamics in a FIFO feed (I)

Other broadcasters 
post a story and 

broadcaster i does 
not post

rij(t)=2 rij(t+dt) = 3

… …Fo
llo

w
er

’s
 w

al
l

Rank at t+dt Broadcaster i 
posts a story and

other broadcasters 
do not post

Nobody posts 
a story

rij(t)=2 rij(t+dt) =0

… …

rij(t)=2

…

rij(t+dt)=2

…
M(t)

Reverse 
chronological order

O
ld

er
 tw

ee
ts

New tweets

[Zarezade et al., 2017 & 2018]
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Visibility dynamics in a FIFO feed (II)

Zero-one law

Other broadcasters 

posts a story

Broadcaster i 

posts a story

Stochastic 

differential equation 

(SDE) with jumps

OUR GOAL:

Optimize rij(t) over time, so that it is small, by controlling 

dNi(t) through the intensity μi(t)

[Zarezade et al., 2017 & 2018]



14

Feed dynamics

We consider a 
general intensity:
(e.g. Hawkes, 
inhomogeneous Poisson)

Deterministic 
arbitrary intensity

Stochastic
self-excitation

Jump stochastic 
differential equation (SDE)

[Zarezade et al., 2017 & 2018]
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The when-to-post problem

…

Nondecreasing lossTerminal penalty

Dynamics 
defined by 
Jump SDEs

Optimization 
problem

[Zarezade et al., 2017 & 2018]
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t

Bellman’s Principle of Optimality

Lemma. The optimal cost-to-go satisfies Bellman’s 
Principle of Optimality 

Hamilton-Jacobi-Bellman (HJB)
equation

Partial differential 
equation in J 

(with respect to r, λ and t)
[Zarezade et al., 2017 & 2018]
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Solving the HJB equation

Consider a quadratic loss

Then, it can be shown that the optimal intensity is:

Trade-offs visibility and number 
of broadcasted posts

Favors some periods of times
(e.g., times in which the follower is 

online)

It only depends on the

current visibility!

[Zarezade et al., 2017 & 2018]
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The RedQueen algorithm

Consider s(t) = s

t1

u*(t) = (s/q)1/2 r(t)

r(t)

tt2 t3 t4

t1 + Δ1 t2 + Δ2 t3 + Δ3 t4 + Δ4 mini ti + Δi

How do we sample the next time?

Superposi9on principle

It only requires sampling M(tf) times!

Δi exp( (s/q)1/2 )

[Zarezade et al., 2017 & 2018]
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Example: a broadcaster in Twitter

01/06 15/06 31/06
0

1500

3000 N(t)

r̄(t)

01/06 15/06 31/06
0

1500

3000

M T W Th F Sa Su
0

100

200

300

400
Significance: 

followers’ retweets 
per weekday

Broadcaster’s 
posts

Average posi>on 
over >me

True posts REDQUEEN40% lower!

[Zarezade et al., 2017 & 2018]
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RL & Control
1. Marked TPP: a new setting
2. Stochastic optimal control

3. Reinforcement learning



Reinforcement learning of marked TPP
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If the problem dynamics cannot be expressed 
using SDEs with jumps or the objective is 
intractable:

Reinforcement learning of marked temporal 
point processes

[Upadhyay, 2018]

Similarly as with optimal control: 
Policy is characterized by an intensity function!

Policy gradient
Policy iteration [Farajtabar et al., 2017]

Next, details on one approach to 
the when/what to post problem 

with algorithmic ranking
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Visibility dynamics are unknown

M(t)

Proprietary 
algorithmic ranking

New tweets

[Upadhyay et al., 2018]

Le
ss

 v
is

ib
ili

ty

However, one may 
have access to 
quality metrics

Key idea: 
Think of these metrics as rewards in a 
reinforcement learning setting!
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Broadcasters and feedback

[Upadhyay et al., 2018]

t

N(t)

t

M(t)

Policy

Parametrized using RNNs

Intensity

Mark 
distribution

We do not know the 
feedback distribution but 
we can sample from it…

…and measure quality 
metrics (rewards)



24

Policy gradient

[Upadhyay et al., 2018]

We aim to maximize the average reward in a time 
window [0, T]:

Reward
(Cumulative)

Actions and 
environment are 
asynchronous!

It can be shown that the reinforce trick is valid, 
i.e., we can compute the gradient and use SGD:
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Example: 100 broadcasters in Twi7er

[Upadhyay et al., 2018]

TPPRL RedQueen Karimi

0.6

0.8

1.0

Optimal control:
It assumes feed in 

reverse chronological 

Offline algorithm
RL:

It learns the 
feed ranking

Lo
w

er
 is

 b
et

te
r
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Many thanks!

1. Intensity func3on
2. Basic building blocks
3. Superposi3on
4. Marks and SDEs with jumps

TEMPORAL POINT PROCESSES (TPPS): INTRO

MODELS & INFERENCE
1. Modeling event sequences
2. Clustering event sequences
3. Capturing complex dynamics
4. Causal reasoning on event sequences

Slides/references: learning.mpi-sws.org/tpp-icml18
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3. Reinforcement learning


