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Models & Inference

1. Modeling event sequences



Event sequences as cascades
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An example: idea adoption

S—D

means Christine
D follows S

3.00pm
3.25pm

Beth
3.27pm

—0

Friggeri et al., 2014

:I'hey can h.ave an impact theguardian
in the off-line world Click and elect: how fake news helped
Donald Trump win a real election



Infection cascade representation

We represent an infection cascade using
terminating temporal point processes:
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Model inference from multiple cascades

Conditional Diffusion log-likelihood
intensities
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Theorem. For any choice of parametric memory,
the maximum likelihood problem is convex in B.

[Gomez-Rodriguez et al., ICML 2011]



I Example of real-world diffusion process

Youtube video: http://youtu.be/hBeaSTRCU4c


http://youtu.be/hBeaSfRCU4c

Dynamic influence

In some cases, influence change over time:
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Recurrent events: beyond cascades
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Recurrent events representation

We represent messages using nonterminating
temporal point processes:
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Recurrent events intensity
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Models & Inference

2. Clustering event sequences



Event sequences

So far, we have assumed
the cascade (topic, meme,
etc.) that each event
belongs to was known.
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Often, the cluster (topic, meme, etc.) that each event in a
sequence belongs to is not known:

BBC News (World) @ @BBCWorld - 4m / Politics
NEWS

- Turkey election: Erdogan win ushers in new presidential era
BBC News (World) & @BBCWorld - 46m ]
_ S Dublin church: Seven injured as car hits pedestrians Music
BBC News (World) @ @BBCWorld - 2h

NEWS Nigerian music star D'banj's son 'drowns at home'

GElS). BBC News (World) & @BBCWorld - 2h
, Turkey election: Country's heart split over Erdogan victory



Clustering event sequences

Assume the event cluster to be hidden and aim to
automatically learn the cluster assigments from the data:
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[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017]



Hierarchical Dirichlet Hawkes process
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[Mavroforakis et al., WWW 2017]



Events representation

We represent the events using marked temporal
point processes:
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Cluster intensity

| |
| ke l_'_\ I
+ -,
| —
t=0 t=1T
Memory
New cascade Cluster T K
>

rate popularity

|| /
N
N
ss920.d sa)meH

Intensit J
ntensity \_'_I Y

or rate Own
(events / hour) « ene ae FoIIow-up —
initiative [Mavroforakis et al., WWW 2017]




User events intensity

Users adopt more than one cluster:
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People share same clusters

Different users adopt same clusters
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Learning cluster (1): Version Control
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Version control tasks tend to be specific,
quickly solved after performing few questions

[Mavroforakis et al., WWW 2017]



Learning cluster (I1): Machine learning

Content Intensities ™ Stackoye g
w

Machine learning tasks tend to be more
complex and require asking more questions

[Mavroforakis et al., WWW 2017]



Models & Inference

3. Capturing complex dynamics



Towards real-world temporal dynamics

Up to now, we have focused on simple temporal
dynamics (and intensity functions):
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Recent works make use of RNNs to capture
more complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017,
Trivedi et al., 2017; Xiao et al., 2017a; 2018]



Neural Hawkes process

1) History effect does not need to be additive

2) Allows for complex memory effects
(such as delays)
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[Mei & Eisner, NIPS 2017]




Neural Hawkes process
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Applications (l): Predictive Models
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Applications (ll): Generative Models

Key idea: Intensity- and likelihood-free models
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[Xiao et al., 2017 & 2018]



Models & Inference

4. Causal reasoning on event sequences



Temporal point processes beyond prediction

So far, we have focused on models that improve
preditions:

Recommendations

XS

v/graft
Community
Acute gangreatitis d ete ct i o n J;%

croiatoffswined - g P e
Link
prediction » .~ . Norrup OPHe gusam  01sm 130pm  2aspm
& 2 0“’0\@\&\ r; Ico wal | l l l
@ | events J%@ 50%9 jg@
[Trivedietal,, 2017 “[Xiao et al., 2017] [Dai et al., 2017]
Recent works have focused on performing causal
inference using event sequences: - /7”
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[Xu et al., 2016; Achab et al., 2017; Kuémierczyk & Gomez-Rodriguez, 2018]



Uncovering Causality from Hawkes Processes

Multivariate Hawkes process:

Granger causality:

“X causes Y in the sense of Granger causality if forecasting
future values of Y is more successful while taking X past
. 11 i
values into account [Granger, 1969]

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Multivariate Hawkes process:
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Granger causality on multivariate Hawkes processes:
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[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:
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direct ancestor is an event by node v

Then, G = |g.,| quantifies the direct causal relationship
between nodes.

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:
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0
\ Average total # of events of node u whose \ \/

direct ancestor is an event by node v

Then, G = |g.,| quantifies the direct causal relationship
between nodes.

Key idea: Estimate G using the cumulants
dN(t) of the Hawkes process.

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:
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Causal reasoning: Applications
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Outline of the Seminar

TEMPORAL POINT PROCESSES (TPPS): INTRO

1. Intensity function

2. Basic building blocks

3. Superposition

4. Marks and SDEs with jumps

MODELS & INFERENCE

. Modeling event sequences

. Clustering event sequences

. Capturing complex dynamics

. Causal reasoning on event sequences
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1. Marked TPPs: a new setting
. Stochastic optimal control
3. Reinforcement learning
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This
lecture

Next
lecture



