

Models & Inference

Isabel Valera

Max Planck Institute for Intelligent Systems

ICML TUTORIAL, JULY 2018

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Event sequences as cascades

An example: idea adoption

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

Infection cascade representation

We represent an infection cascade using terminating temporal point processes:

Infection intensity

Model inference from multiple cascades

Conditional intensities

$$\lambda_u^*(t)$$

Diffusion log-likelihood

$$\mathfrak{L} = \sum_{u=1}^{n} \log \lambda_u^*(t_u) - \int_0^T \lambda_u^*(\tau) d\tau$$

Maximum likelihood approach to find model parameters!

Theorem. For any choice of parametric memory, the **maximum likelihood** problem is **convex in B**.

Dynamic influence

In some cases, influence change over time:

Propagation over networks 0 with variable influence

Recurrent events: beyond cascades

Up to this point, each users is only infected once, and event sequences can be seen as cascades.

In general, users perform recurrent events over time. E.g., people repeatedly express their opinion online:

How social media is revolutionizing debates

The New York Times

Social Media Are Giving a Voice to Taste Buds

Twitter Unveils A New Set Of Brand-Centric Analytics

The New York Times

Campaigns Use Social Media to Lure Younger Voters

Recurrent events representation

We represent messages using **nonterminating temporal point processes**:

Recurrent events intensity

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Event sequences

So far, we have assumed the cascade (topic, meme, etc.) that each event belongs to was known.

Often, the cluster (topic, meme, etc.) that each event in a sequence belongs to is not known:

Clustering event sequences

Assume the event cluster to be hidden and aim to automatically learn the cluster assigments from the data:

Bayesian methods to cluster event sequences in the context of:

Health care

	Method	DMHP
•	ICU Patient	0.3778
	IPTV User	0.2004

[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017]

Hierarchical Dirichlet Hawkes process

1st year computer science student

Events representation

We represent the events using marked temporal point processes:

Cluster intensity

User events intensity

Users adopt more than one cluster:

A user's learning events as a multidimensional Hawkes:

Time cluster
$$\begin{pmatrix} \lambda_{u,1}^*(t) \\ \vdots \\ \lambda_{u,\infty}^*(t) \end{pmatrix}$$

Content
$$\rightarrow q_n = \boldsymbol{\omega} \quad \omega_j \sim Multinomial(\boldsymbol{\theta}_p)$$

People share same clusters

Different users adopt same clusters

Learning cluster (I): Version Control

Content

Intensities

Version control tasks tend to be specific, quickly solved after performing few questions

Learning cluster (II): Machine learning

Content

Intensities

Machine learning tasks tend to be more complex and require asking more questions

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Towards real-world temporal dynamics

Up to now, we have focused on simple temporal dynamics (and intensity functions):

Recent works make use of RNNs to capture more complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017; Trivedi et al., 2017; Xiao et al., 2017a; 2018]

Neural Hawkes process

- 1) History effect does not need to be additive
- 2) Allows for complex memory effects (such as delays)

Neural Hawkes process

Applications (I): Predictive Models

Know-Evolve, Trivedi et al. (2017)

Coevolutionary Embedding,

Applications (II): Generative Models

Key idea: Intensity- and likelihood-free models

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

Temporal point processes beyond prediction

So far, we have focused on models that improve

preditions:

Recent works have focused on performing causal

inference using event sequences:

Treatment effect

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t - t') dN_v(t')$$

Granger causality:

"X causes Y in the sense of Granger causality if forecasting future values of Y is more successful while taking X past values into account"

[Granger, 1969]

Effect of v's past events on u

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t - t') dN_v(t')$$

Effect of v's past events on u

Granger causality on multivariate Hawkes processes:

" $N_v(t)$ does not Ganger-cause $N_u(t)$ w.r.t. N(t) if and only if $k_{u,v}(\tau)=0$ for $\ \tau\in\Re^+$ "

[Eichler et al., 2016]

Goal is to estimate $G = [g_{uv}]$, where:

$$g_{uv} = \int_0^{+\infty} k_{u,v}(\tau) d\tau \geq 0 \ \text{for all } u,v \in \mathcal{U}$$
 Average total # of events of node u whose direct ancestor is an event by node v

Then, $G = [g_{uv}]$ quantifies the *direct causal relationship* between nodes.

Goal is to estimate $G = [g_{uv}]$, where:

$$g_{uv} = \int_0^{+\infty} k_{u,v}(\tau) d\tau \geq 0 \ \text{for all} \ u,v \in \mathcal{U}$$
 Average total # of events of node u whose direct ancestor is an event by node v

Then, $G = [g_{uv}]$ quantifies the *direct causal relationship* between nodes.

Key idea: Estimate G using the cumulants dN(t) of the Hawkes process.

[Achab et al., ICML 2017]

Key idea: Estimate G using the cumulants the dN(t) of the Hawkes process.

[Achab et al., ICML 2017]

Causal reasoning: Applications

Infectivity matrix estimation

D Mo N Sh Mu Sp Mi R K Sc F Others Drama 2 Movie News 4 Show Music 6 Sports Ministry 8 Record Kids₁₀ Science Finance₁₂ Law 10 2 8 [Xu et al., 2016]

Effect of Badges

Tag wiki rank over time

[Kuśmierczyk & Gomez-Rodriguez, 2018]

Outline of the Seminar

TEMPORAL POINT PROCESSES (TPPs): INTRO

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

Models & Inference

- 1. Modeling event sequences
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

RL & CONTROL

- 1. Marked TPPs: a new setting
- 2. Stochastic optimal control
- 3. Reinforcement learning

This lecture

Next lecture

Slides/references: learning.mpi-sws.org/tpp-icml18