Representations in brains and machines

Matthias Bethge MLSS 2016 Cadiz

http://bethgelab.org

$$y = f(w_1 \cdot x_1 + \dots + w_n \cdot x_n)$$

Threshold Logic Unit, McCulloch&Pitts, 1943

Universal function approximation

arbitrary behavior

 $y = f(w_1 \cdot x_1 + \dots + w_n \cdot x_n)$

Threshold Logic Unit, McCulloch&Pitts, 1943

Universal function approximation

arbitrary behavior

Threshold Logic Unit, McCulloch&Pitts, 1943 Perceptron, Rosenblatt, 1957 Back-propagation, Werbos, 1974

arbitrary boolean function:

$$f: \{0,1\}^n \to \{0,1\}$$
$$\mathbf{x} \mapsto y = f(\mathbf{x})$$

cardinality of hypothesis space: 2^n bits

Simple example (MNIST):

$$n = 28^2 = 784$$

amount of necessary information: 2^{784} bits = 2^{781} bytes = 2^{771} kB = 2^{761} MB = 2^{751} GB = 2^{741} TB $\approx 10^{75}$ TB

Look-up table representation:

Lossy representation (pixel count):

Assumption:
$$f(\mathbf{x}) = g(y), \quad y = g(\mathbf{x}) := \sum_{k=1}^{n} x_k$$

 $g: \{0, 1\}^n \rightarrow \{0, 1, 2, \dots, n\}$

785 bits ≈ 98 by tes $< 0.1~\mathrm{kB}$

Different types of prior constraints:

invariance constraint: equivariance constraint: bounded variation:

: $f(\mathbf{x}) = f(\mathbf{x}'), \quad \forall \mathbf{x}, \mathbf{x}' \in M$ int: $f(G\mathbf{x}) = \tilde{G}f(\mathbf{x}), \quad \forall \mathbf{x} \in M$ $d(f(\mathbf{x}), f(\mathbf{x}')) < \delta, \quad \forall \mathbf{x}' \in M(\mathbf{x})$

Don't expect too much from your data

\Rightarrow Try to use what you already know!

Some basics on supervised learning

Generalized linear modeling

$$f: \mathbb{R}^n \to \mathbb{R}$$
$$f(\mathbf{x}) = g(\mathbf{w}^\top \mathbf{x}) = g\left(\sum_{k=1}^n w_k x_k\right)$$

Nelder&Wedderburn, 1972

LN cascade models:

feature space embedding

 $f: \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{\Phi}(\mathbf{x})$$

NL cascade models:

feature space embedding

 $f: \mathbb{R}^n \to \mathbb{R}$ $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{\Phi}(\mathbf{x})$

Example I: Quadratic feature space

 $z_1 = x_1^2$ $z_2 = x_1 \cdot x_2$ $z_3 = x_1 \cdot x_3$... $z_n = x_1 \cdot x_n$

 $z_{n+1} = x_2^2$ $z_{n+2} = x_2 \cdot x_3$ \cdots $z_{2n-1} = x_2 \cdot x_n$ \cdots $z_m = x_{n(n+1)/2} = x_n^2$

Example II: Arbitrary polynomial feature space

Linear \bigoplus Quadratic \bigoplus Cubic \bigoplus ...

Curse of dimensionality: $m \ge \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$

Noise

$$p(y|f(\mathbf{x}) = \mathcal{N}(y|f(\mathbf{x}), \sigma^2)$$

 $p(y|f(\mathbf{x}) = \mathcal{N}(y|\mu, (\sigma \cdot f(\mathbf{x}))^2)$

NLN cascade regression

$$f: R^{n} \to R \quad f(\mathbf{x}) = g(\mathbf{w}^{\top} \Phi(\mathbf{x})) \quad \text{noise model:} \quad \hat{p}(y|f_{\mathbf{w}}(\mathbf{x}))$$

$$\underbrace{\mathbf{x}}_{\substack{\in R^{n} \text{ enbedding } \Phi \in R^{m} \text{ inear filtering } s \in R \text{ pointwise } f \text{ noise } y \\ \stackrel{\text{nonlinearity } g \in R \text{ pointwise } f \text{ noise } y \\ \stackrel{\text{nonlinearity } g \in R \text{ pointwise } s \in R \text{ noise } y \\ \stackrel{\text{nonlinearity } g \in R \text{ pointwise } f \text{ pointwise } f \text{ pointwise } y \\ \stackrel{\text{nonlinearity } g \in R \text{ pointwise } g \in R \text{ pointwise } g \in R \text{ pointwise } y \\ \stackrel{\text{nonlinearity } g \in R \text{ pointwise } g \in R \text{ pointwis$$

NLN cascade regression

$$f: R^{n} \to R \qquad f(\mathbf{x}) = g(\mathbf{w}^{\top} \Phi(\mathbf{x})) \qquad \text{noise model:} \quad \hat{p}(y|f_{\mathbf{w}}(\mathbf{x}))$$

$$\underbrace{\mathbf{x}}_{\substack{ \in R^{n} \text{ enture space } \\ embedding \Phi \in R^{m} \text{ inear filtering } \\ embedding \Phi \in R^{m} \text{ onlinearity } g \\ embedding \Phi \in R^{m} \text{ onl$$

Cross-entropy learning:

Find weights w to minimize the cross-entropy w.r.t. some noise model $\hat{p}(y|f_{\mathbf{w}}(\mathbf{x}))$ that depends on $f_{\mathbf{w}}(\mathbf{x})$.

NLN cascade regression

Example (least squares regression):

additive Gaussian noise model:

$$\hat{p}(y|f_{\mathbf{w}}(\mathbf{x})) := \mathcal{N}(y|\mathbf{w}^{\top}\mathbf{x},\sigma^2)$$

cross-entropy:

$$E[-\log(\hat{p}(y|f_{\mathbf{w}}(\mathbf{x})))] = \frac{1}{2}\log(2\pi\sigma^2) + \frac{1}{2}\left(\frac{y - \mathbf{w}^{\top}\mathbf{x}}{\sigma}\right)^2$$

unique optimum:

$$\mathbf{w}^{\top} = E[y\mathbf{x}^{\top}](E[\mathbf{x}\mathbf{x}^{\top}])^{-1}$$

Neural System identification

Spikes

Neural System identification

p(spike|stimulus history, spike history)

Spikes

Overview

Generalized linear models (GLMs)

Spike-triggered-mixture model (**STM**)

Empirical results

Spike detection

Overview

Generalized linear models (GLMs)

Spike-triggered-mixture model (**STM**)

Empirical results

Spike detection

Generalized linear models

 $p(y|\mathbf{x}) = p(\text{spike}|\text{stimulus history})$

Linear-nonlinear-Poisson

$$p(y \mid \mathbf{x}) = \frac{\lambda^y}{y!} e^{-\lambda}$$
$$\lambda = \exp(\mathbf{w}^\top \mathbf{x})$$

Linear-nonlinear-Bernoulli (logistic regression)

$$p(y \mid \mathbf{x}) = r^{y}(1-r)^{1-y}$$
$$r = \left(1 + \exp\left(-\mathbf{w}^{\top}\mathbf{x}\right)\right)^{-1}$$

Generalized linear models

$$p(y|\mathbf{x}) = p(\text{spike}|\text{stimulus history})$$

Linear-nonlinear-Poisson

$$p(y \mid \mathbf{x}) = \frac{\lambda^{y}}{y!} e^{-\lambda}$$
$$\lambda = \exp(\mathbf{w}^{\top} \Phi(\mathbf{x}))$$

Linear-nonlinear-Bernoulli (logistic regression)

$$p(y \mid \mathbf{x}) = r^{y}(1-r)^{1-y}$$

$$r = \left(1 + \exp\left(-\mathbf{w}^{\top}\Phi(\mathbf{x})\right)\right)^{-1}$$

Generalized linear models

 \blacktriangleright w is optimized, ϕ is fixed

+Concave log-likelihood-Choosing a good \$\oplus\$ is hard

Linear-nonlinear-Bernoulli (logistic regression)

$$p(y \mid \mathbf{x}) = r^{y}(1-r)^{1-y}$$
$$r = \left(1 + \exp\left(-\mathbf{w}^{\top}\mathbf{x}\right)\right)^{-1}$$

Overview

Generalized linear models (GLMs)

Spike-triggered-mixture model (STM)

Empirical results

Spike detection

A generative view

$p(\text{spike} | \mathbf{x}) \propto p(\mathbf{x} | \text{spike})p(\text{spike})$

A generative view

$$p(\mathbf{x} \mid \text{spike} = 1) = \mathcal{H}(\mathbf{x}; \mu_1, \Sigma_1)$$
Quadratic-nonlinear-Bernoulli
$$p(\text{spike} = 1 \mid \mathbf{x}) = \sigma\left(\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \mathbf{w}^{T}\mathbf{x} + b\right)$$

$$p(\mathbf{x} \mid \text{spike} = \mathbf{0} \int \frac{\operatorname{spike}(\tau \mid \mathbf{x}; \mu_0)}{\tau}, \Sigma_0 \int \left(\log \frac{p(\mathbf{x} \mid \text{spike} = 1)}{p(\mathbf{x} \mid \text{spike} = 0)} + \log \frac{p(\operatorname{spike} = 1)}{\mathbf{0}}\right) \int \frac{p(\operatorname{spike} = 1)}{\tau}$$

$$\mathbf{w} = \Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0$$

A generative view

$$p(\text{spike} = 1 \mid \mathbf{x}) = \sigma\left(\log \frac{p(\mathbf{x} \mid \text{spike} = 1)}{p(\mathbf{x} \mid \text{spike} = 0)} + \log \frac{p(\text{spike} = 1)}{p(\text{spike} = 0)}\right)$$

$$p(\mathbf{x} \mid \text{spike} = 1) = \sum_{k} \pi_{1k} \mathcal{N}(\mathbf{x}; \mu_{1k}, \Sigma_{1k})$$

 $p(\mathbf{x} | \text{spike} = 0) = \mathcal{N}(\mathbf{x}; \mu_0, \Sigma_0)$

Spike-triggered-mixture model (STM)

$$p(\text{spike} = 1 | \mathbf{x}) = \sigma\left(\log\sum_{k} \exp\left(\mathbf{x}^{\top}\mathbf{Q}_{k}\mathbf{x} + \mathbf{w}_{k}^{\top}\mathbf{x} + b_{k}\right)\right)$$

Soft-maximum

4-3-2-1-0--1--2-2 -3-0 f_2 -4--4 -2 -2 0 2 -4 f_1 4

 $\log \sum \exp f_k$

k

Parameter reduction

Factored STM
Factored STM

$$p(\text{spike} = 1 \mid \mathbf{x}) =$$

$$\sigma\left(\log\sum_{k} \exp\left(\sum_{m} \alpha_{km} (\mathbf{u}_{m}^{\top} \mathbf{x})^{2} + \mathbf{w}_{k}^{\top} \mathbf{x} + b_{k}\right)\right)$$

$$\mathbf{Q}_k = \sum_m \boldsymbol{\alpha}_{km} \mathbf{u}_m \mathbf{u}_m^\top$$

Spike-triggered-mixture model (STM)

$$p(\text{spike} = 1 \mid \mathbf{x}) = \sigma\left(\log\sum_{k} \exp\left(\mathbf{x}^{\top}\mathbf{Q}_{k}\mathbf{x} + \mathbf{w}_{k}^{\top}\mathbf{x} + b_{k}\right)\right)$$

Spike history dependency

Stimulus

$$p(\text{spike} = 1 \mid \mathbf{x}) = \sigma \left(\log \frac{p(\mathbf{x} \mid \text{spike} = 1)}{p(\mathbf{x} \mid \text{spike} = 0)} + \log \frac{p(\text{spike} = 1)}{p(\text{spike} = 0)} \right)$$

$$p(\text{spike} = 1 \mid \mathbf{x}, \mathbf{z}) = \sigma \left(\log \frac{p(\mathbf{x}, \mathbf{z} \mid \text{spike} = 1)}{p(\mathbf{x}, \mathbf{z} \mid \text{spike} = 0)} + \log \frac{p(\text{spike} = 1)}{p(\text{spike} = 0)} \right)$$

Spike history, e.g.

Naive Bayes assumption: $p(\mathbf{x}, \mathbf{z} \mid \text{spike}) = p(\mathbf{x} \mid \text{spike})p(\mathbf{z} \mid \text{spike})$

$$p(\text{spike} = 1 \mid \mathbf{x}, \mathbf{z}) = \sigma \left(\log \frac{p(\mathbf{x} \mid \text{spike} = 1)}{p(\mathbf{x} \mid \text{spike} = 0)} + \log \frac{p(\mathbf{z} \mid \text{spike} = 1)}{p(\mathbf{z} \mid \text{spike} = 0)} + \log \frac{p(\text{spike} = 1)}{p(\text{spike} = 0)} \right)$$
Spike history dependency

$$p(\text{spike} = 1 \mid \mathbf{x}, \tau) = \sigma \left(\log \sum_{k} \exp \left(\sum_{m} \alpha_{km} (\mathbf{u}_{m}^{\top} \mathbf{x})^{2} + \mathbf{w}_{k}^{\top} \mathbf{x} + b_{k} \right) + \mathbf{v}^{\top} \phi(\tau) \right)$$

Model summary

Model summary as neural network (LN-LNLN-LNB)

simple and complex cell preprocessing nonlinear "dendritic" integration (log-sum-exp) GLM logistic spike generation (spike-history dependent)

Overview

Generalized linear models (GLMs)

Spike-triggered-mixture model (**STM**)

Empirical results

Spike detection

Whisker cells

Cornelius Schwarz

Andre Chagas

Chagas & Schwarz

Whisker cells

42 /22

Chagas & Schwarz

Different models

SA cell

Simulated spike trains

Neuron

RA cell

50 ms

Spike-triggered distribution

 \dot{x}_t

44//33

Quantitative comparison

Cross-entropy / negative log-likelihood:

 $-\frac{1}{T}\sum_{t}\log p(\mathbf{y}_t \mid \mathbf{x}_t)$

Quantitative comparison

Cross-entropy / negative log-likelihood:

$$-\frac{1}{T}\sum_{t}\log p(\mathbf{y}_t \mid \mathbf{x}_t)$$

Information transmission

Spike train

$$I[\mathbf{y}, \mathbf{x}] = H[\mathbf{y}] - H[\mathbf{y} \mid \mathbf{x}]$$
Stimulus

- "Direct method" (DM)
- ► Use histograms for estimating entropy
- +Simple
- -Direction of bias unclear
- -Requires repeated stimulation with same stimulus

Information transmission

Spike train

$$I[\mathbf{y}, \mathbf{x}] = H[\mathbf{y}] - H[\mathbf{y} \mid \mathbf{x}]$$
Stimulus

Model-based method

- ► Use cross-entropy for estimating entropy
- +Conservative estimate
- + Does not require repeated experiments
- -Takes longer due to model fitting

```
Model distribution

\int H[\mathbf{y} \mid \mathbf{x}] \leq E[-\log p(\mathbf{y} \mid \mathbf{x})]
```

Negative log-likelihood/ cross-entropy

Information rates

How much data is enough?

Disentangling nonlinear behavior

Disentangling nonlinear behavior

Literature

Theis et al.: "*Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification.*" PloS Computational Biology, **9**:11, 2013.

Software: <u>http://bethgelab.org/code/theis2013a/</u>

Overview

Generalized linear models (GLMs)

Spike-triggered-mixture model (**STM**)

Empirical results

Spike detection

Spike detection from Calcium measurements

4 datasets from V1 and retina

Calcium indicators: OGB-1 and GCamp6)

$$\lambda_{\text{STM}}(\boldsymbol{x}_t) = \sum_{k=1}^{K} \exp\left(\sum_{m=1}^{M} \beta_{km} (\boldsymbol{u}_m^{\mathsf{T}} \boldsymbol{x}_t)^2 + \boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_t + \boldsymbol{b}_k\right).$$

$$p(k_t \mid \boldsymbol{x}_t) = \frac{\lambda(\boldsymbol{x}_t)^k}{k!} e^{-\lambda(\boldsymbol{x}_t)}.$$

Model comparison

Theis, Berens, Froudarakis, Reimer, Román Rosón, Baden, Euler, Tolias, Bethge <u>http://biorxiv.org/content/early/2015/02/27/010777</u>

Philipp Berens

Algorithm	Approach	Technique	Reference
STM	Supervised	STM	This paper
SI08	Supervised	PCA+SVM	(Sasaki et al., 2008)
PP14	Generative	MCMC sampling	(Pnevmatikakis et al., 2014)
OD13	Template matching	Finite rate innovation	(Oñativia et al., 2013)
VP10	Generative	MAP estimation	(Vogelstein et al., 2010)
VP09	Generative	SMC sampling	(Vogelstein et al., 2009)
YF06	Generative	Deconvolution	(Yaksi and Friedrich, 2006)

4 datasets of simultaneously recorded Calcium signals and spikes from V1 and retina: 75 traces from 67 neurons, in total ~ 89.000 spikes

Dataset 1: 16 neurons, mouse V1, in-vivo, anesthetized, fast 3D AOD-based imaging at ~320 Hz, OGB-1

Dataset 2: 31 neurons, mouse V1, in-vivo, line scanning at ~12 Hz, OGB-1

Dataset 3: 11 neurons, mouse V1, in-vivo, resonance scanner at ~59 Hz, genetic indicator GCamp6s

Dataset 3: 9 retinal ganglion cells, mouse retina, in-vitro, line-scanning at ~8 Hz, OGB-1

Effect of temporal resolution on spike detection performance

Philipp Berens

PP14

VP09

Raw

VP10

Generalization across experiments

OGB1 OGB1 AOD Galvo GCamp AOD Retina OGB1 Galvo Training data Test data **b** 0.6-**PP14** STM SI08 VP10 0.5n.s. Raw 0.4 Correlation 0.3 0.2-0.1-0 Test V1 OGB1 V1 OGB1 V1 GCamp6 Retina OGB1 data: AOD Galvo Resonant Galvo

Philipp Berens

Generalization across experiments

Philipp Berens

Literature and competition

Philipp Berens

Theis et al.: "Benchmarking spike rate inference in population calcium imaging." Neuron, **90(3):** 471-482, 2016.

Software: https://github.com/lucastheis/c2s

unsupervised representation learning/ natural image statistics

pattern recognition

feature space embedding simple decoding

simple decoding behaviorally

relevant

variables

inductive bias

nice learning

inductive bias

nice learning

task-specific

simple decoding

nice learning

What are good features for vision?

What are good features for vision?

 Neuroscience angle: Early Vision/Sensory Coding

Unsupervised Learning

H.B. Barlow Kenneth Craik Laboratory, Physiological Laboratory, Downing Street, Cambridge, CB2 3EG, England

What use can the brain make of the massive flow of sensory information that occurs without any associated rewards or punishments? This

THE ROLE OF NATURE, NURTURE, AND INTELLIGENCE IN PATTERN RECOGNITION

INTELLIGENT PATTERN RECOGNITION

H.B. BARLOW

Kenneth Craik Laboratory Downing St, Cambridge CB2 3EG, England

The Knowledge Used in Vision and Where It Comes from Author(s): Horace B. Barlow Source: *Philosophical Transactions: Biological Sciences*, Vol. 352, No. 1358, Knowledge-based Vision in Man and Machine, (Aug. 29, 1997), pp. 1141-1147

generative image representation have much lower entropy than image pixels

==> transform input into a minimum entropy representation

Redundancy Reduction

An attractive feature of [redundancy reduction] is that a code formed in response to redundancies in the input would constitute a distributed memory of this regularities---one that is used automatically and does not require a separate recall mechanism."

Horace Barlow, BBS, 2001

Barlow's redundancy reduction hypothesis (1961)

Redundancy Reduction

Barlow's redundancy reduction hypothesis

statistics of sensory data

receptive field properties

 ${\mathcal X}$

 \mathcal{U}

Redundancy Reduction

Deep Redundancy Reduction

rank correlation of gray levels

pixel

Modeling image patches

Independent Component Analysis (ICA)

 $\begin{array}{c} \text{Redundancy Reduction} \\ \textbf{y} = W \textbf{x} \\ \hline \end{array}$

Generative model $\mathbf{x} = W^{-1}\mathbf{y}$

Nonlinear redundancy reduction of spherical data

[Maxwell, Taylor's Phil. Mag. 19: 19-32., 1860.]

Nonlinear redundancy reduction of spherical data

[Sinz, Gerwinn & Bethge, Characterization of the p-generalized Normal distribution, *Journal of Multivariate Analysis*, **100(5):** 817-820, 2009.]

\Rightarrow Non-factorial Lp-spherical density with p=1.3

[Sinz & Bethge, NIPS, 2008.]

The class of Lp-spherical distributions

[Sinz, Gerwinn & Bethge, Characterization of the p-generalized Normal distribution, *Journal of Multivariate Analysis*, **100(5)**: 817-820, 2009.]

Multivariate Density Estimation

Multivariate Density Estimation

Multivariate Density Estimation

Factorial generative model:

$$\hat{p}_s(\mathbf{s}) = \prod_{k=1}^d \hat{p}_k(s_k)$$
 $\mathbf{x} = \mathbf{f}(\mathbf{s})$ $\hat{p}_x(\mathbf{x})$

What is the loss function?

Factorial generative model:

$$\hat{p}_s(\mathbf{s}) = \prod_{k=1}^d \hat{p}_k(s_k)$$
 $\mathbf{x} = \mathbf{f}(\mathbf{s})$ $\hat{p}_x(\mathbf{x})$

Cross-entropy:

Kullback-Leibler divergence

$$E[-\log \hat{p}_x(\mathbf{x})] = h[p_x(\mathbf{x})] + D_{KL}[p_x(\mathbf{x})||\hat{p}_x(\mathbf{x})]$$
$$= h[p_x(\mathbf{x})] + D_{KL}[p_s(\mathbf{s})||\hat{p}_s(\mathbf{s})]$$

What is the loss function?

$$D_{KL}[p_s(\mathbf{s})||\hat{p}_s(\mathbf{s})] =$$

$$= \underbrace{D_{KL}\left[p_s(\mathbf{s}) \left\| \prod_{k=1}^d p_k(s_k)\right]}_{=I[p_s(\mathbf{s})]} + \sum_{k=1}^d D_{KL}[p_k(s_k)| |\hat{p}_k(s_k)]$$

"Multi-Information"

Model comparison

Model comparison

Multi-layer ICA

Friedman (1987): Exploratory projection pursuit. J Am Stat Assoc 89: 249-266.

Multi-layer ICA

Lp-nested distribution:

$$p(\mathbf{x}) = p(||W\mathbf{x}||_p)$$
$$p(\mathbf{x}) = p(\nu(W\mathbf{x}))$$

[Sinz & Bethge (2010). JMLR, 3409-3451.]

MCGSM: a directed mixture of experts model of natural images

Key advantages:

1.) Built-in translation invariance

2.) Model if you can and ignore if not

Mixture of conditional GSMs (MCGSM)

Gating:
$$p(c,s|\mathbf{x}) \propto \exp\left(-rac{\lambda_{c,s}}{2}\mathbf{x}^ op K_c\mathbf{x}
ight)$$

Prediction:
$$p(y|c, s, \mathbf{x}) \propto \exp\left(-\frac{1}{2} \frac{(y - \mathbf{w}_c^\top \mathbf{x})^2}{\sigma_{s,c}^2}\right)$$
Theis et al, PLoS One, 2012.

Multi-scale MCGSM

Theis et al (2012). PLoS ONE 7,7.

Samples from the MCGSM model

MCGSM

MCGSM + multi-scale

Jascha Sohl-Dickstein

Stanford University

Eric A. Weiss

University of California, Berkeley

Niru Maheswaranathan

Stanford University

Surya Ganguli

Stanford University

t = T

Generative Image Modeling Using Spatial LSTMs

Madal	63 dim.	64 dim.	∞ dim.
Widdei	[nat]	[bit/px]	[bit/px]
RNADE [41]	152.1	3.346	-
RNADE, 1 hl [42]	143.2	3.146	-
RNADE, 6 hl [42]	155.2	3.416	-
EoRNADE, 6 layers [42]	157.0	3.457	-
GMM, 200 comp. [44, 47]	153.7	3.360	-
STM, 200 comp. [43]	155.3	3.418	-
Deep GMM, 3 layers [44]	156.2	3.439	-
MCGSM, 16 comp.	155.1	3.413	3.688
MCGSM, 32 comp.	155.8	3.430	3.706
MCGSM, 64 comp.	156.2	3.439	3.716
MCGSM, 128 comp.	156.4	3.443	3.717
EoMCGSM, 128 comp.	158.1	3.481	3.748
RIDE, 1 layer	150.7	3.293	3.802
RIDE, 2 layers	152.1	3.346	3.869
EoRIDE, 2 layers	154.5	3.400	3.899

Model	256 dim.	∞ dim.
	[bit/px]	[bit/px]
GRBM [11]	0.992	-
ICA [1, 45]	1.072	-
GSM	1.349	-
ISA [6, 14]	1.441	-
MoGSM, 32 comp. [37]	1.526	-
MCGSM, 32 comp.	1.615	1.759
RIDE, 1 layer, 64 hid.	1.650	1.816
RIDE, 1 layer, 128 hid.	-	1.830
RIDE, 2 layers, 64 hid.	-	1.829
RIDE, 2 layers, 128 hid.	-	1.839

Filling-in

Feb 29, 2016: <u>http://arxiv.org/pdf/1601.06759v2.pdf</u>

Pixel Recurrent Neural Networks

Aäron van den Oord	AVDNOORD@GOOGLE.COM
Nal Kalchbrenner	NALK@GOOGLE.COM
Koray Kavukcuoglu	KORAYK@GOOGLE.COM

Google DeepMind

Model	NLL Test (Train)
Uniform Distribution:	8.00
Multivariate Gaussian:	4.70
NICE [1]:	4.48
Deep Diffusion [2]:	4.20
Deep GMMs [3]:	4.00
RIDE [4]:	3.47
PixelCNN:	3.14 (3.08)
Row LSTM:	3.07 (3.00)
Diagonal BiLSTM:	3.00 (2.93)

occluded

completions

original

Figure 1. Image completions sampled from a PixelRNN.

Psychophysical Model comparison

2AFC: Which contains natural samples?

(always 64 samples each)

Trial Time Course

Design

- PCA, ICA, L_2 , L_p N=16
- MEC with k = 2, 4, 8, or 16 mixtures N=12
- ♦ 30 trials / model / patch size

Results

can we learn this?

task-invariant

feature space embedding

inductive bias

REVIEW

Unsupervised Learning

H.B. Barlow Kenneth Craik Laboratory, Physiological Laboratory, Downing Street, Cambridge, CB2 3EG, England

What use can the brain make of the massive flow tion that occurs without any associated rewards or

Main Idea:

generative image representation have much lower entropy than image pixels

Redundancy reduction

transform input into a minimum entropy representation

Minimax modeling/Onion peeling

Minimax modeling/Onion peeling

Feb 29, 2016: <u>http://arxiv.org/pdf/1601.06759v2.pdf</u>

Pixel Recurrent Neural Networks

Aäron van den Oord	AVDNOORD@GOOGLE.COM
Nal Kalchbrenner	NALK@GOOGLE.COM
Koray Kavukcuoglu	KORAYK@GOOGLE.COM

Google DeepMind

Model	NLL Test (Train)
Uniform Distribution:	8.00
Multivariate Gaussian:	4.70
NICE [1]:	4.48
Deep Diffusion [2]:	4.20
Deep GMMs [3]:	4.00
RIDE [4]:	3.47
PixelCNN:	3.14 (3.08)
Row LSTM:	3.07 (3.00)
Diagonal BiLSTM:	3.00 (2.93)

Maximum entropy modeling vs synthesis models

A simple generative model with perfect samples:

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n} \mathcal{N}(\mathbf{x}; \sqrt{1 - \alpha} T(\mathbf{x}_n), \alpha \sigma^2 \mathbf{I})$$

Maximum entropy modeling vs synthesis models

A simple generative model with perfect samples:

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n} \mathcal{N}(\mathbf{x}; \sqrt{1 - \alpha} T(\mathbf{x}_n), \alpha \sigma^2 \mathbf{I})$$

Maximum entropy modeling vs synthesis models

The quality of synthetic images has no necessary implications for the likelihood:

$$\hat{p}_{publish}(\mathbf{x}) = \epsilon \, \hat{p}(\mathbf{x}) + (1 - \epsilon) \, \hat{p}_{nicefy}(\mathbf{x})$$
$$\Rightarrow \hat{p}_{publish}(\mathbf{x}) \ge \underbrace{\log(\epsilon)}_{=\mathcal{O}(1)} + \underbrace{\log \hat{p}(\mathbf{x})}_{=\mathcal{O}(N)}$$

how much smaller is the model entropy than the data entropy?

Theis et al: A note on the evaluation of generative models. ICLR, 2016.
Image completion

completions

occluded

original

van den Oord et al, http://arxiv.org/pdf/1601.06759v2.pdf

Literature

Gerhard, Theis, Bethge. Modeling Natural Image Statistics. Biologically-inspired Computer Vision—Fundamentals and Applications, Wiley VCH, 2015.

Theis & Bethge. Generative Image Modeling Using Spatial LSTMs. Advances in Neural Information Processing Systems 28, June 2015.

Theis, A. van den Oord, Bethge. A note on the evaluation of generative models. International Conference on Learning Representations, 2016.

van den Oord, Kalchbrenner, Kavukcuoglu. Pixel recurrent neural networks, <u>http://arxiv.org/pdf/1601.06759v2.pdf</u> arXiv, 2016.

Wrap-up

- Curse of dimensionality
- NLN cascade regression

$$10^{75} \text{ TB}$$

$$10^{$$

$$\hat{p}(y|\mathbf{x}) = \hat{p}(y|g(s(\mathbf{x})) \quad s(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{\Phi}(\mathbf{x})$$

• going beyond NLN regression (spike prediction):

$$s(\mathbf{x}) = \log \sum_{k=1}^{K} \exp \left(\beta_{k1} (\mathbf{u}_{k1}^{\top} \mathbf{x})^2 + \dots + \beta_{kM} (\mathbf{u}_{kM}^{\top} \mathbf{x})^2 + \mathbf{w}_{k}^{\top} \mathbf{x} + \mathbf{b}_{k}\right)$$

- Natural image statistics
- Minimax modeling

 $\hat{p}_{publish}(\mathbf{x}) = \epsilon \, \hat{p}$

Representations in brains and machines

Part II

Matthias Bethge MLSS 2016 Cadiz

http://bethgelab.org

REVIEW

Unsupervised Learning

H.B. Barlow Kenneth Craik Laboratory, Physiologica Downing Street, Cambridge, CB2 3EG, 1

What use can the brain make of th tion that occurs without any associate

Task-invariant features from supervised deep learning

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In *ICML*, 2014.

M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. Technical Report HAL-00911179, INRIA, 2013.

A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN Features off-the-shelf: an Astounding Baseline for Recognition," *CoRR*, vol. abs/1403.6382, 2014.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In *BMVC*, 2014.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. *CoRR*, abs/1311.2901, 2013.

1000 categories tabby

lynx

Egyptian

cat

IMAGENET benchmark

dalmatian

Unbiased look at dataset bias (Torralba & Efros 2011)

task	Test on:	SUN00	LabelMe	PASCAL	ImageNet	Caltech101	MSPC	Self	Mean	Percent
usk	Train on:	30109	Labenvie	TASCAL	inageivet	Calteen101	MSKC	Sen	others	drop
	SUN09	28.2	29.5	16.3	14.6	16.9	21.9	28.2	19.8	30%
	LabelMe	14.7	34.0	16.7	22.9	43.6	24.5	34.0	24.5	28%
uo	PASCAL	10.1	25.5	35.2	43.9	44.2	39.4	35.2	32.6	7%
ati	ImageNet	11.4	29.6	36.0	57.4	52.3	42.7	57.4	34.4	40%
",	Caltech101	7.5	31.1	19.5	33.1	96.9	42.1	96.9	26.7	73%
ass	MSRC	9.3	27.0	24.9	32.6	40.3	68.4	68.4	26.8	61%
<i>c</i> ,	Mean others	10.6	28.5	22.7	29.4	39.4	34.1	53.4	27.5	48%
	SUN09	69.8	50.7	42.2	42.6	54.7	69.4	69.8	51.9	26%
	LabelMe	61.8	67.6	40.8	38.5	53.4	67.0	67.6	52.3	23%
	PASCAL	55.8	55.2	62.1	56.8	54.2	74.8	62.1	59.4	4%
"car" detection	ImageNet	43.9	31.8	46.9	60.7	59.3	67.8	60.7	49.9	18%
	Caltech101	20.2	18.8	11.0	31.4	100	29.3	100	22.2	78%
	MSRC	28.6	17.1	32.3	21.5	67.7	74.3	74.3	33.4	55%
	Mean others	42.0	34.7	34.6	38.2	57.9	61.7	72.4	44.8	48%
	SUN09	16.1	11.8	14.0	7.9	6.8	23.5	16.1	12.8	20%
	LabelMe	11.0	26.6	7.5	6.3	8.4	24.3	26.6	11.5	57%
uo	PASCAL	11.9	11.1	20.7	13.6	48.3	50.5	20.7	27.1	-31%
ati	ImageNet	8.9	11.1	11.8	20.7	76.7	61.0	20.7	33.9	-63%
son	Caltech101	7.6	11.8	17.3	22.5	99.6	65.8	99.6	25.0	75%
ass	MSRC	9.4	15.5	15.3	15.3	93.4	78.4	78.4	29.8	62%
<i>c</i> 1,"	Mean others	9.8	12.3	13.2	13.1	46.7	45.0	43.7	23.4	47%
	SUN09	69.6	56.8	37.9	45.7	52.1	72.7	69.6	53.0	24%
"person" detection	LabelMe	58.9	66.6	38.4	43.1	57.9	68.9	66.6	53.4	20%
	PASCAL	56.0	55.6	56.3	55.6	56.8	74.8	56.3	59.8	-6%
	ImageNet	48.8	39.0	40.1	59.6	53.2	70.7	59.6	50.4	15%
	Caltech101	24.6	18.1	12.4	26.6	100	31.6	100	22.7	77%
	MSRC	33.8	18.2	30.9	20.8	69.5	74.7	74.7	34.6	54%
	Mean others	44.4	37.5	31.9	38.4	57.9	63.7	71.1	45.6	36%

Deep CNN transfer learning

feature vector

IM GENET

1000 categories 1000 images for each

Transfer learning:

- 1. Train convolutional neural network (CNN) to classify images into one of 1000 classes.
- 2. Once trained, use the feature vector for other tasks.
- 3. How useful is the feature vector for vision?

Deep CNN transfer learning

mAP over VOC2007

ImageNet feature vector

classifier

Pascal VOC

class labels

many other tasks

ImageNet feature vector

object detection

convnets (CNNs)

image segmentation

surface normal estimation

material inference

many other

 $\rho(x,y)$

prior

posterior

Practical setup:

$$\rho(x, y) = \frac{1}{N} \sum_{I=1}^{N} \rho(x, y|I)$$

$$\rho(x, y|I)$$

baseline model (nonparametric estimate)

gold standard (nonparametric estimate)

 $\rho(x,y)$

prior

posterior

information gain:
$$E\left[\log\left(\frac{\rho_M(x,y|I)}{\rho_{base}(x,y)}\right)\right]$$

= how much information a model can gain from the given image about the x-y-positions of fixations.

information gain:
$$E\left[\log\left(\frac{\rho_M(x,y|I)}{\rho_{base}(x,y)}\right)\right]$$

= how much information a model can gain from the given image about the x-y-positions of fixations.

information gain:
$$E\left[\log\left(\frac{\rho_M(x,y|I)}{\rho_{base}(x,y)}\right)\right]$$

 how much information a model can gain from the given image about the x-y-positions of fixations.

mit300 saliency benchmark

http://saliency.mit.edu/

50 models, 5 baselines, 8 metrics,

Model Name	Published	Code	AUC- Judd [?]	SIM [?]	EMD [?]	AUC- Borji [?]	sAUC [?]	CC [?]	NSS [?]	KL [?]	Date tested [key]	Sample [img]
Baseline: infinite humans [?]			0.91	1	o	0.87	0.80	1	3.18	o		1
SALICON	Xun Huang, Chengyao Shen, Xavier Boix, Qi Zhao		0.87	0.60	2.62	0.85	0.74	0.74	2.12	0.54	first tested: 11/19/2014 last tested: 11/15/2015 maps from authors	1º
DeepFix	Srinivas S S Kruthiventi, Kumar Ayush, R. Venkatesh Babu DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations [arXiv 2015]		0.87	0.67	2.04	0.80	0.71	0.78	2.26	2.26	first tested: 10/02/2015 last tested: 10/02/2015 maps from authors	1
Deep Gaze 1	Matthias Kümmerer, Lucas Theis, Matthias Bethge. Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet [arxiv 2014]		0.84	0.39	4.97	0.83	0.66	0.48	1.22	1.23	first tested: 10/02/2014 last tested: 11/15/2015 maps from authors	13
Boolean Map based Saliency (BMS)	Jianming Zhang, Stan Sclaroff. Saliency detection: a boolean map approach [ICCV 2013]	matlab, executable	0.83	0.51	3.35	0.82	0.65	0.55	1.41	0.81	first tested: 14/05/2014 last tested: 23/09/2014 maps from authors	X
SalNet	Kevin McGuinness. Unpublished work.		0.83	0.52	3.31	0.82	0.69	0.58	1.51	0.81	first tested: 06/17/2015 last tested: 11/15/2015 maps from authors	1
Mixture of Saliency Models	Xuehua Han, Shunji Satoh. "Unifying computational models for visual attention" [AINI 2014, Sep. (accepted)]		0.82	0.44	4.22	0.81	0.62	0.52	1.34	0.91	first tested: 08/08/2014 last tested: 23/09/2014 maps from authors	×
Ensembles of Deep Networks	Eleonora Vig, Michael Dorr, David Cox. Large-Scale Optimization of Hierarchical Features for Saliency	python	0.82	0.41	4.56	0.81	0.62	0.45	1.14	1.14	first tested: 08/16/2014 last tested: 11/15/2015	1

Matthias

Kümmerer

Kümmerer, Wallis, Bethge, PNAS, 112(52): 16054-16059, 2015.

Tom Wallis

Measure model performance on a "ratio scale"

Matthias Kümmerer

Kümmerer, Wallis, Bethge, PNAS, 112(52): 16054-16059, 2015.

Tom Wallis

ı gain explained	100	Baseline	IttiKoch	Kienzle	CovSal	HouZhang	SUN, orig	GBVS	IttiKoch2	Context Aware	Torralba	Judd	SUN, optim	RARE	AIM	BMS	eDN	Deep Gaze I	Gold standard
gair	50				1		·····												
ation	24				↓	pe	erto	orm	ian	се	bo	OSt							
inform	34																		

Matthias Kümmerer

ICLR Workshop paper
http://arxiv.org/abs/1411.1045

Lucas Theis

Matthias Kümmerer ICLR Workshop paper
http://arxiv.org/abs/1411.1045

Lucas Theis

Matthias Kümmerer

ICLR Workshop paper
http://arxiv.org/abs/1411.1045

Lucas Theis

eDN

DeepGaze I

DeepGaze II

DeepGaze II

Images with largest information gain of DeepGaze II

DeepGaze II

Images with least information gain of DeepGaze II

Information gain difference between DeepGaze II and eDN

Images with largest improvement of DeepGaze II over eDN

diff=2.55 bit/fix

diff=2.42 bit/fix

diff=2.27 bit/fix

Images with largest improvement of DeepGaze II over eDN

2.18 bit/fix 84.2% eDN -0.61 bit/fix -24.6%

-0.24 bit/fix -9.2%

1.09 bit/fix 34.2%

diff=2.42 bit/fix

diff=2.27 bit/fix

3.36 bit/fix 105.0%

Images with least (negative) improvement of DeepGaze II

diff=-0.50 bit/fix

Images with least (negative) improvement of DeepGaze II

diff=-0.26 bit/fix

1.20 bit/fix 68.4%

1.46 bit/fix 83.3%

diff=-0.24 bit/fix

1.46 bit/fix 86.7%

Largest improvement in information gain explained

Convnet representations are useful beyond object recognition

ImageNet feature vector

saliency prediction Kuemmerer, Theis, Bethge 2015

> object detection Krizhevsky et al. 2012 Simonyan et al. 2014

image segmentation Long et al. 2015 Chen et al, 2015 Berning et al. 2015

> depth inference Eigen et al. 2015

retinal disease detection Haloi 2015

Convnet representations are useful beyond object recognition

A Cambrian explosion of artificial neural networks

Key question:

Can we understand how the world is represented in artificial neural networks?

conv5_2 512 conv5_3⁴ • 512 conv4_2 pool4 conv4_3⁴_2 conv3_2 256 pool3 conv3_3 pool2 conv2_2 128 conv2_1² pool1 $- - conv1_{1}^{2}$ conv1_2 64

features

features

features

Pre-image search

$$y_0 = f(x_0)$$

64

conv1_2

Pre-image search

$$\nabla_x ||f(x) - y_0||^2$$

$$y_0 = f(x_0)$$

64

conv1_2

Pre-image search

$$\nabla_x ||f(x) - y_0||^2$$

$$y_0 = f(x_0)$$

64

Mahendran & Vedaldi (2014), Gatys et al (2015)

Neural Image Representations

Visual Textures

Julesz' Conjecture

Texture Sample

All textures producing the same measurement outcomes should be perceived as the same texture!

Julesz (1962)

Julesz' Conjecture

All textures producing the same measurement outcomes should be perceived as the same texture!

Julesz (1962)

Julesz' Conjecture

All textures producing the same measurement outcomes should be perceived as the same texture!

Julesz (1962)

Parametric Texture Synthesis

Synthesis

Early Vision Texture Models

Linear filter bank

Heeger & Bergen (1995) Portilla & Simoncelli (2000)

Convolutional Neural Network Texture Model

Convolutional Neural Network

Gatys et al. (NIPS 2015)

Convolutional Neural Network (CNN)

- Use VGG-19 network
- 2nd Place ImageNet 2014 object recognition challenge
- Consists of only 2 operations:
 - 3 x 3 x k rectified convolution
 - 2 x 2 max-pooling

CNN - Convolution

CNN - Convolution

CNN - Max-pooling

CNN - Multiscale Filter Bank

features

CNN - Texture Features

 $F = \left[\bar{f}_1, \bar{f}_2, \bar{f}_3, \dots, \bar{f}_N\right]^T$ $G = FF^T$

 $= \begin{pmatrix} \langle \bar{f}_1, \bar{f}_1 \rangle & \cdots & \langle \bar{f}_1, \bar{f}_N \rangle \\ \langle \bar{f}_2, \bar{f}_1 \rangle & & \vdots \\ \vdots & \ddots & \vdots \\ \langle \bar{f}_N, \bar{f}_1 \rangle & \cdots & \langle \bar{f}_N, \bar{f}_N \rangle \end{pmatrix}$

 $\langle \bar{f}_i, \bar{f}_j \rangle = \sum F_{ik} F_{jk}$

Gram Matrices

Parametric Texture Synthesis

Synthesis

Gram Matrices

Texture Synthesis - Results

Test Julesz' Conjecture

Test Julesz' Conjecture

Synthesised

Source

Synthesised

Synthesised

Source

Source

Synthesised

Source

Laton And a Rever 2.00 4014 . 120 20

Synthesised

Source

Source

Synthesised

Source

Synthesised

Source

Synthesised

Source

Synthesised

Source

Texture Synthesis - Layers

Classification from Texture Features

Objects

Classification from Texture Features

Classification from Texture Features

Texture Synthesis - Summary

- CNN texture model sets a new state of the art in parametric texture synthesis.
- Texture features disentangle object identity information along the layers
- Textures from non-texture images map out the spatial invariance of the network's classification response.

Controlled stimulus design (model-matched)

http://arxiv.org/abs/1505.07376

Neural Image Representations

CNN - Texture Synthesis

Gatys et al. (NIPS 2015)
Representation of stimulus information

Mahendran & Vedaldi (2014), Gatys et al (2015)

Disentangling content and style

 $\begin{pmatrix} \langle \bar{f}_1, \bar{f}_1 \rangle & \cdots & \langle \bar{f}_1, \bar{f}_N \rangle \\ \langle \bar{f}_2, \bar{f}_1 \rangle & & \vdots \\ \vdots & \ddots & \vdots \\ \langle \bar{f}_N, \bar{f}_1 \rangle & \cdots & \langle \bar{f}_N, \bar{f}_N \rangle \end{pmatrix}$

content

Disentangling content and style

 $\left(\begin{array}{cccc} \langle \bar{f}_1, \bar{f}_1 \rangle & \cdots & \langle \bar{f}_1, \bar{f}_N \rangle \\ \langle \bar{f}_2, \bar{f}_1 \rangle & & \vdots \\ \vdots & \ddots & \vdots \\ \langle \bar{f}_N, \bar{f}_1 \rangle & \cdots & \langle \bar{f}_N, \bar{f}_N \rangle \end{array}\right)$

style

content

Van Gogh (1889)

THE

MA

10

-

Sata

R

Picasso (1910)

Munch (1893)

DITION

THE REAL PROPERTY OF A PARTY OF A

SHIL

CHER I

TAR

A

SPORT P

Kandinsky (1913)

Tübingen, Neckar front

III

IN

用用

IIIIII I

f ttt / l

THE REAL PROPERTY AND INCOME.

I

T

F

General Style Transfer

Color independent style transfer

https://deepart.io

HOW IT WORKS

Our algorithm is inspired by the human brain. It uses the stylistic elements of one image to draw the content of another. Get your own artwork in just three steps.

DeepArt - Visual Turing Test

DeepArt - Visual Turing Test

DeepArt - Visual Turing Test

Visual Turing Test - Results

frequency score

Histogram of the scores

~45.000 people, average score: 6.1 (chance: 5)

Wrap-up

Important Open Problems

Important challenge I

Can we build DNNs for which it is hard to construct adversarial examples?

Szegedy et al, Intriguing properties of neural networks <u>http://arxiv.org/abs/1312.6199</u> (2013)

king penguin	starfish	baseball	electric guitar
freight car	remote control	peacock	African grey

Nguyen et al, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. (2015)

+L1 penalty

Important challenge II

Can we learn DNNs with semantically meaningful intermediate layers?

Important challenge III

Can we build high-performing DNNs without learning?

Intelligent Systems

Intelligent Systems

Thanks!

<u>DeepArt.io</u> <u>bethgelab.org/deeptextures</u>

Thanks!

<u>DeepArt.io</u> <u>bethgelab.org/deeptextures</u>

Thanks!

<u>DeepArt.io</u> <u>bethgelab.org/deeptextures</u>

Enjoy MLSS in Cadiz!

DeepArt.io bethgelab.org/deeptextures