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given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Classification: estimate a class label f(x)

  High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily

Huge variability

inside classes

Find invariants



• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Regression: approximate a functional f(x)

given n sample values {xi , yi = f(xi) 2 R}in

  High Dimensional Learning

Astronomy Quantum Chemistry

Physics: energy f(x) of a state vector x

Importance of symmetries.



     Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?
x

Problem: kx� xik is always large

• Need ✏�d
points to cover [0, 1]d at a Euclidean distance ✏
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     Multiscale Separation

• Variables x(u) indexed by a low-dimensional u: time/space...

pixels in images, particles in physics, words in text...

From d2 interactions to O(log

2 d) multiscale interactions.

• Mutliscale interactions of d variables:

• Multiscale analysis: wavelets on groups of symmetries.

hierarchical architecture.

u1

u2



          Overview

• 1 Hidden Layer Network, Approximation theory and Curse 

• Kernel learning 

• Dimension reduction with change of variables 

• Deep Neural networks and symmetry groups 

• Wavelet Scattering transforms 

• Applications and many open questions

Understanding Deep Convolutional Networks, arXiv 2016.



• To estimate f(x) from a sampling {xi , yi = f(xi)}iM

• Precise sparse approximation requires some ”regularity”.

• For binary classification f(x) =
⇢

1 if x ⇥ �
�1 if x /⇥ �

f(x) = sign(f̃(x))

where

˜f is potentially regular.

• What type of regularity ? How to compute fM ?

we must build an M -parameter approximation fM of f .

   Learning as an Approximation



�(wn.x + bn)

M

fM (x) =
MX

n=1

�n ⇥(wn.x + bn)

↵n
wn.x =

P
k wk,nxk

One-hidden layer neural network:

{wk,k}k,n and {�n}n are learned
non-linear approximation.

   1 Hidden Layer Neural Networks

d

x

Theorem: For ”resonnable” bounded �(u)

8f 2 L2[0, 1]d lim
M!1

kf � fMk = 0 .

and appropriate choices of wn,k and �n:

Cybenko, Hornik, Stinchcombe, White

No big deal: curse of dimensionality still there.

ridge functions

wn

⇢(x.wn + bn)



�(wn.x + bn)

M

fM (x) =
MX

n=1

�n ⇥(wn.x + bn)
↵n

wn.x =
P

k wk,nxk

One-hidden layer neural network:

{wk,k}k,n and {�n}n are learned
non-linear approximation.

   1 Hidden Layer Neural Networks

d

x

f

M

(x) =
MX

n=1

↵

n

e

iwn.x

For nearly all ⇢: essentially same approximation results.

Fourier series: ⇢(u) = eiu



   Piecewise Linear Approximation

f(x)
x✏

• Piecewise linear approximation:

⇢(u) = max(u, 0)
f̃(x) =

X

n

an ⇢(x� n✏)

n✏

)

Need M = ✏�1
points to cover [0, 1] at a distance ✏

kf � fMk  CM�1

If f is Lipschitz: |f(x)� f(x0)|  C |x� x

0|

) |f(x)� f̃(x)|  C ✏.



   Linear Ridge Approximation

⇢(u) = max(u, 0)

need M = ✏�d
points to cover [0, 1]d at a distance ✏

) kf � fMk  CM�1/d

Curse of dimensionality!

f̃(x) =
X

n

an ⇢(wn.x� n✏)

• Piecewise linear ridge approximation:

x 2 [0, 1]d

Sampling at a distance ✏:

) |f(x)� f̃(x)|  C ✏.

If f is Lipschitz: |f(x)� f(x0)|  C kx� x

0k



• What prior condition makes learning possible ?

   Approximation with Regularity

⇤x, u |f(x)� pu(x)| ⇥ C |x� u|s with pu(x) polynomial

• Approximation of regular functions in Cs
[0, 1]

d
:

f(x)

pu(x)

xu

|x� u|  ✏

1/s ) |f(x)� pu(x)|  C ✏

Need M�d/s
point to cover [0, 1]d at a distance ✏1/s

kf � fMk  CM�s/d)

• Can not do better in Cs
[0, 1]d

, not good because s ⌧ d.
Failure of classical approximation theory.



Data:

             Kernel Learning 

x 2 Rd

x

Change of variable �(x) = {�k(x)}kd0

f̃(x) = h�(x) , wi =
X

k

wk �k(x) .

to nearly linearize f(x), which is approximated by:

1D projection

• What ”regularity” of f is needed ?

• How and when is possible to find such a � ?

Metric: kx� x

0k

�

Linear Classifier

�(x) 2 Rd0

w

k�(x)� �(x0)k



) Choose � increasing dimensionality !

Proposition: There exists a hyperplane separating
any two subsets of N points {�xi}i in dimension d

0
> N + 1

if {�xi}i are not in an a⇥ne subspace of dimension < N .

     Increase Dimensionality

Problem: generalisation.

If � is small, nearest neighbor classifier type:

�

Example: Gaussian kernel h�(x),�(x0
)i = exp

⇣�kx� x

0k2

2�

2

⌘

�(x) is of dimension d

0
= 1

, overfitting.



    Reduction of Dimensionality

) kf � fMk  C M�1/d0

�(x) 6= �(x0) if f(x) 6= f(x0)

) 9f̃ with f(x) = f̃(�(x))

• For x 2 ⌦, if �(⌦) is bounded and a low dimension d

0

• Discriminative change of variable �(x):

, |f(x)� f(x0)|  C k�(x)� �(x0)kz = �(x)

• If f̃ is Lipschitz: |f̃(z)� f̃(z0)|  C kz � z0k

Discriminative: k�(x)� �(x0)k � C

�1 |f(x)� f(x0)|



x

Linear Classificat.

⇢

linear convolution

linear convolution

    Deep Convolution Neworks

L2

⇢

�(x)

...

non-linear scalar:

L1

neuron

Why does it work so well ?

Optimize Lj with architecture constraints: over 109 parameters

Exceptional results for images, speech, language, bio-data...

⇢(u) = max(u, 0)

• The revival of neural networks: Y. LeCun

Hierarchical
invariants

Linearization

y = f̃(x)

A di�cult problem



  ImageNet Data Basis

• Data basis with 1 million images and 2000 classes



• Imagenet supervised training: 1.2 10

6
examples, 10

3
classes

15.3% testing error

Wavelets

  Alex Deep Convolution Network

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel I

xy

=

[I

R

xy

, I

G

xy

, I

B

xy

]

T we add the following quantity:

[p
1

,p
2

,p
3

][↵
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�
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,↵
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�
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,↵

3

�
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]

T

where p
i

and �

i

are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵

i

is the aforementioned random variable. Each ↵

i

is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

v

i+1

:= 0.9 · v
i

� 0.0005 · ✏ · w
i

� ✏ ·
⌧
@L

@w

��
wi

�

Di

w

i+1

:= w

i

+ v

i+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L

@w

��
wi

E

Di

is
the average over the ith batch D

i

of the derivative of the objective with respect to w, evaluated at
w

i

.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and
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A. Krizhevsky, Sutsever, Hinton

in 2012

New networks with 5% errors.

Up to 150 layers!



        Image Classification Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]



  Scene Labeling / Car Driving

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]



k✏k < 10�2kxk+ ✏ = with

       Why Understading ?

correctly
classified

classified as 
ostrich

x

x̃

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus

• Trial and error testing can not guarantee reliability.



x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢

⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

• ⇢ is contractive:

|⇢(u)� ⇢(u0)|  |u� u0|

⇢(u) = max(u, 0) or ⇢(u) = |u|



Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

 Linearisation in Deep Networks

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

• Trained on a data basis of faces:

linearization

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

• On a data basis including bedrooms: interpolaitons

A. Radford, L. Metz, S. Chintala



         Many Questions

• Why convolutions ? Translation covariance. 
• Why no overfitting ? Contractions, dimension reduction 

• Why hierarchical cascade ? 
• Why introducing non-linearities ? 
• How and what to linearise ? 
• What are the roles of the multiple channels in each layer ?

x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

⇢L1
⇢LJ classification

⇢Lj



     Linear Dimension Reduction

Level sets of f(x)

⌦t = {x : f(x) = t}

⌦1 ⌦2 ⌦3
Classes

by linear projections: invariants.

If level sets (classes) are parallel to a linear space

then variables are eliminated

�(x)

x



Linearise for Dimensionality Reduction

Level sets of f(x)

⌦t = {x : f(x) = t}

• If level sets ⌦t are not parallel to a linear space

- Linearise them with a change of variable �(x)

- Then reduce dimension with linear projections

Classes

⌦1
⌦2

⌦3

• Di�cult because ⌦t are high-dimensional, irregular,

known on few samples.

�(x)

x



Level Set Geometry: Symmetries

• A symmetry is an operator g which preserves level sets:

8x , f(g.x) = f(x) .: global

g
g

Level sets: classes

⌦1

⌦2

• Curse of dimensionality ) not local but global geometry

f(g1.g2.x) = f(g2.x) = f(x)

If g1 and g2 are symmetries then g1.g2 is also a symmetry

, characterised by their global symmetries.



       Groups of symmetries

• G = { all symmetries } is a group: unknown

8(g, g0) 2 G2 ) g.g0 2 G

8g 2 G , g�1 2 G

(g.g0).g00 = g.(g0.g00)

Inverse:

Associative:

If commutative g.g0 = g0.g : Abelian group.

• Group of dimension n if it has n generators:

g = gp1
1 gp2

2 ... gpn
n

• Lie group: infinitely small generators (Lie Algebra)



x(u)

 Translation and Deformations

Video of Philipp Scott Johnson

• Digit classification:

- Globally invariant to the translation group

- Locally invariant to small di↵eomorphisms

: small

: huge group

x

0(u) = x(u� ⌧(u))

⌦3 ⌦5



H : Heisenberg group of ”time-frequency” translations

     Frequency Transpositions

encyclopaedias
log(!)

t

log(!)

t



Time and frequency translations and deformations:

for speech recognition not for locutor recognition.

• Frequency transposition invariance is needed

        Frequency Transpositions

log(!)

t



SO(2)⇥Di�(SO(2))Group:

• Rotation and deformations

• Scaling and deformations

R⇥Di�(R)
Group:

  Rotation and Scaling Variability



     Linearize Symmetries
• A change of variable �(x) must linearize the orbits {g.x}g2G

x

g

p
1 .x

g1x

g

p
1 .x

0

g1x
0

x

0

• Linearise symmetries with a change of variable �(x)

�(gp1 .x
0)�(x0)

�(x)

�(gp1 .x)

• Lipschitz: 8x, g : k�(x)� �(g.x)k  C kgk



x(u) x

0(u)

 Translation and Deformations

Video of Philipp Scott Johnson

• Digit classification:

- Globally invariant to the translation group

- Locally invariant to small di↵eomorphisms

Linearize small

di↵eomorphisms:

) Lipschitz regular



  Translations and Deformations

• Invariance to translations:

g.x(u) = x(u� c) ) �(g.x) = �(x) .

• Small di↵eomorphisms: g.x(u) = x(u� ⌧(u))

Metric: kgk = kr⌧k1 maximum scaling

Linearisation by Lipschitz continuity

k�(x)� �(g.x)k  C kr⌧k1 .

k�(x)� �(x0)k � C

�1 |f(x)� f(x0)|

• Discriminative change of variable:



|bx(�)||bx⌧ (�)|

• Fourier transform x̂(!) =

R
x(t) e

�i!t
dt

The modulus is invariant to translations:

) k|x̂|� |x̂⌧ |k � kr⌧k1 kxk

�(x) = |x̂| = |x̂c|

   Fourier Deformation Instability

| |x̂⌧ (�)|� |x̂(�)| | is big at high frequencies
• Instabilites to small deformations x� (t) = x(t� �(t)) :

!

xc(t) = x(t� c) ) x̂c(!) = e

�ic!
x̂(!)

⌧(t) = ✏ t
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x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Deep Convolutional  Trees

⇢L1
⇢LJ

xj = ⇢Lj xj�1

classification

Lj is composed of convolutions and subs samplings:

xj(u, kj) = ⇢

⇣
xj�1(·, k) ? hkj ,k(u)

⌘

No channel communication: how far can we go ?

Why hierachical cascade ?



  Translations and Deformations

• Invariance to translations:

g.x(u) = x(u� c) ) �(g.x) = �(x) .

• Small di↵eomorphisms: g.x(u) = x(u� ⌧(u))

Metric: kgk = kr⌧k1 maximum scaling

Linearisation by Lipschitz continuity

k�(x)� �(g.x)k  C kr⌧k1 .

k�(x)� �(x0)k � C

�1 |f(x)� f(x0)|

• Discriminative change of variable:



          Overview Part II

• Wavelet Scattering transform along translations 

• Generation of textures and random processes 

• Channel connections for more general groups 

• Image and audio  classification with small training sets 

• Quantum chemistry 

• Open problems

Understanding Deep Convolutional Networks, arXiv 2016.



• Dilated wavelets:  �(t) = 2�j/Q  (2�j/Qt) with � = 2�j/Q .

  Multiscale Wavelet Transform

Q-constant band-pass filters �̂�

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2��(t)
���(t)

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:

Preserves norm:

�Wx�2 = �x�2 .

: average

: higher
frequencies

x ?  �(t) =

Z
x(u) �(t� u) du ) \

x ?  �(!) = bx(!) b �(!)



• Wavelets are uniformly stable to deformations:

if  �,⌧ (t) =  �(t� ⌧(t)) then

⇤⇥� � ⇥�,⇥⇤ ⇥ C sup
t

|⌅�(t)| .

     Why Wavelets ?

• Wavelets separate multiscale information.

• Wavelets provide sparse representations.



x(t)

|x ⇥ ��1(t)| =
���
Z

x(u)��1(t� u) du
���

 �1

1/�1

     Singular Functions

|x ⇥ ��1(t)|



     Scattering Transform

t

|x ?  �1(t)|

    Time-Frequency Fibers

�1log! =

t

x(t)

Wavelet transform modulus: |W | frequency

time



x(t)

|W1|x =

✓
x ? �2J

|x ?  �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

x ?  �1(t) = x ?  

a
�1

(t) + i x ?  

b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

|x ?  �1 | ? �2J (t)

2J

local translation invariance

x ? �2J (t)

full translation invariance

2J = 1

Second wavelet transform modulus

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2



x(t)

|x ⇥ ��1(t)| =
���
Z

x(u)��1(t� u) du
���

 �1

1/�1

     Singular Functions

|x ⇥ ��1(t)|  �2



lo
g

(!
1
)

t

First−order windowed scattering (small scale)

lo
g

(!
1
)

t

First−order windowed scattering (large scale)

lo
g

(!
2
)

t

Second−order windowed scattering (large scale) Band #75

18 Hz
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     Scattering Transform
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rotated and dilated:

real parts imaginary parts

 Scale separation with Wavelets

 2j ,✓(u) = 2�j  (2�jr✓u)

• Wavelet transform:
: average

: higher
frequencies

Wx =

✓
x ? �2J (u)
x ?  2j ,✓(u)

◆

jJ,✓

• Wavelet filter  (u):

|�̂�(⇥)|2

�1

�2

Preserves norm:

�Wx�2 = �x�2 .

x ?  2j ,✓(u) =

Z
x(v) 2j ,✓(u� v) dv

+ i



      Averaging Pyramid

Hx(u) =
x(2u) + x(2u+ 1)

2

x(u)
u

H2x

H3x

H4x

• Multiscale averaging by cascade of pair averaging:



where h is a low frequency and g is a high frequency filter.

Hx(u) = x ? h(2u) and Gx(u) = x ? g(2u)

        Haar Filtering
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      Fast Wavelet Filter Bank
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.
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      Wavelet Filter Bank
x(u)⇢(↵) = |↵|

• Sparse representation

|x ?  2j ,✓|

If u � 0 then ⇢(u) = u

⇢ has no e↵ect after an averaging.
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⇢ has no e↵ect after an averaging.



- it preserves the norm �|W |x� = �x�

|W |x =

✓
x ⇤ �(t)

|x ⇤ ⇥�(t)|

◆

t,�

is non-linear

Wx =
✓

x ⇤ �(t)
x ⇤ ⇥�(t)

◆

t,�

is linear and kWxk = kxk

- it is contractive ⇤|W |x� |W |y⇤ ⇥ ⇤x� y⇤
because for (a, b) ⇤ C2 ||a|� |b|| ⇥ |a� b|

     Contraction

⇢(u) = |u|



= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

preserves norms kSJxk = kxk

kWkxk = kxk ) k|Wkx|� |Wkx
0|k  kx� x

0kLemma : k[Wk, D⌧ ]k = kWkD⌧ �D⌧Wkk  C kr⌧k1

translations invariance and deformation stability:

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

      Scattering  Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is



LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

SJx y = f(x)
x

Supervised
Linear classifier

Invariants to specific deformations

Separates di↵erent patterns

Invariants to translations

Linearises small deformations

No learning

Training size Conv. Net. Scattering

50000 0.4% 0.4%



2D Turbulence
⌦1 ⌦2

Classification of Stationary Textures

• What stochastic models ?

Non Gaussian with long-range dependance.

• Can we ”Gaussianize” (linearize) such distributions

in a reduced dimensional space ?



J. Bruna

     Classification of Textures

CUREt database

Texte

Classification Errors

SJx y = f(x)
x

Supervised
Linear classifier

Training Fourier Scattering

per class Spectr.

46 1% 0.2 %



The scattering transform of a stationary process X(t)

Scattering  Moments of Processes

E(SX) =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...

J ! 1

Gaussian distribution: N
⇣
E(SX),⌃J ! 0

⌘
with ”weak” ergodicity conditions

Central limit theorem

: scattering moments

: stationary vectorSJX =

0

BBBB@

X ? �2J (t)
|X ?  �1 | ? �2J (t)

||X ?  �1 | ?  �2 | ? �2J (t)
|||X ?  �2 | ?  �2 | ?  �3 | ? �2J (t)

...

1

CCCCA

�1,�2,�3,...

J. Bruna



The scattering transform of a stationary process X(t)

Scattering  Moments of Processes

J ! 1

Gaussian distribution: N
⇣
E(SX),⌃J ! 0

⌘
with ”weak” ergodicity conditions

Central limit theorem

: stationary vectorSJX =

0

BBBB@

X ? �2J (t)
|X ?  �1 | ? �2J (t)

||X ?  �1 | ?  �2 | ? �2J (t)
|||X ?  �2 | ?  �2 | ?  �3 | ? �2J (t)

...

1

CCCCA

�1,�2,�3,...

kSJX̃ � SJXk2
• Reconstruction: compute

˜X which minimises

• Gradient descent
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 Ergodic Texture Reconstructions
Joan Bruna

2D Turbulence

E(|x ?  �1 |) , E(||x ?  �1 | ?  �2 |)
Second order Gaussian Scattering: O(logN2

) moments

Textures of N pixels

Gaussian process model with N second order moments



  Ising Model and Inverse Problem

p(x) = Z

�1
� exp

⇣
� �

X

i,j

Ji,j x(i)x(j)

⌘
with x(i) = ±1

�c

�

scattering low-resolution

TV optim.

Scat pred.
GaussianIsing

Bruna, Dokmanic, Maarten de Hoop



x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Deep Convolutional  Trees

⇢L1
⇢LJ

xj = ⇢Lj xj�1

classification

Lj is composed of convolutions and subs samplings:

xj(u, kj) = ⇢

⇣
xj�1(·, k) ? hkj ,k(u)

⌘

No channel communication: what limitations ?



UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation

20 20 %

  Rotation and Scaling Invariance
Laurent Sifre



x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢

⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

What is the role of channel connections ?

Linearize other symmetries beyond translations.



     Rotation Invariance

2J |x ?  22,✓|

|x ?  23,✓|Scale

|x ?  21,✓|

|W1|

x ? �J

✓

• Channel connections linearize other symmetries.

• Invariance to rotations are computed by convolutions

along the rotation variable ✓ with wavelet filters.

) invariance to rigid mouvements.



• Action on wavelet coe�cients:

 Extension to Rigid Mouvements
Laurent Sifre

x(u) |W1|

R
x(u)du

• Group of rigid displacements: translations and rotations

|W1|

R
x(u)du

xj(r↵(u� c), ✓ � ↵)
x(r↵(u� c)) xj(u, ✓) = |x ?  2j ,✓(u)|

rotation & translation

rotation & translation , angle translation

Need to capture the variability of spatial directions.



• To build invariants: second wavelet transform on L2
(G):

with wavelets  �2(u, ✓)

 Extension to Rigid Mouvements
Laurent Sifre

• Scattering on rigid mouvements:

Wavelets on Rigid Mvt.

Wavelets on Rigid Mvt.

xj(u , ✓)

Wavelets on Translations

x(u)

R
x(u)du

|W1| |W2| |xj ~  �2(v, ✓)|

R
xj(u, ✓) dud✓

|W3|
Z

|xj ~  �2(v, ✓)|dud✓

convolutions of xj(u, ✓)

x~  �(u, ✓) =

Z 2⇡

0

✓Z

R2

x(u0
, ✓

0) ✓,2j (r�✓0(u� u

0))

◆
 2k(✓ � ✓

0)d✓0dt0

 2k(✓)

Fast computations of roto-translation convolutions with
separable wavelet filters ⇥�2,j2,k2(u, �) = ⇤�2,j2(u)⇤k2

(�)
are performed by factorizing

Y �⇥�2,j2,k2(u, �)
=�

��
⌅�

u�
Y (u�, ��)⇤�2,j2(r⇥��(u ⇤ u�))⌥ ⇤k2

(� ⇤ ��) .

It is thus computed with a two-dimensional convolution of
Y (u, ��) with ⇤�2,j2(r⇥�u) along u = (u1, u2), followed
by a convolution of the output and a one-dimensional cir-
cular convolution of the result with ⇤k2

along �. Figure 5
illustrates this convolution which rotates the spatial support
⇤�2,j2(u) by � while multiplying its amplitude by ⇤k2

(�).

θ

u1
u2

ψθ2,j2(u1, u2)

ψk2
(θ)

Figure 5: A three dimensional roto-translation convolution
with a wavelet ⇥�2,j2,k2(u1, u2, �) can be factorized into a
two dimensional convolution with ⇤�2,j2(u1, u2) rotated by
� and a one dimensional convolution with ⇤k2

(�) .

Applying�W3 =�W2 to U2x computes second order scat-
tering coefficients as a convolution of Y (g) = U2x(g, p2)
with �J(g), for p2 fixed:

S2x(p2) = U2(., p2)x��J(g) . (18)

It also computes the next layer of coefficients U3x with
a roto-translation convolution of U2x(g, p2) with the
wavelets (13,14,15). In practice, we stop at the second or-
der because the coefficients of U3x carry a small amount of
energy, and have little impact on classification. One can in-
deed verify that the energy of Umx decreases exponentially
to zero as m increases.

The output roto-translation of a second order scattering
representation is a vector of coefficients:

Sx = ⇤S0x(u) , S1x(p1) , S2x(p2)⌃ , (19)

with p1 = (u, �1, j1) and p2 = (u, �1, j1, �2, j2, k2). The
spatial variable u is sampled at intervals 2J which corre-
sponds to the patch size. If x is an image of N2 pixels,

there are thus 2⇥2JN2 coefficients in S0x and 2⇥2JN2J
coefficients in S1x. Second order coefficients have a negli-
gible amplitude if j2 ⇥ j1. If the wavelet are rotated along
K angles � then one can verify that S2x has approxima-
tively 2⇥2JN2J(J ⇤ 1)K log2 K�2 coefficients. The to-
tal roto-translatation patch scattering Sx is of dimension
341N2�1024 for J = 5 and K = 8. The overall complexity
to compute this roto-translation scattering representation is
O(K2N2 logN).
4. Scaling Invariance of Log Scattering

Roto-translation scattering is computed over image
patches of size 2J where the image is approximately lo-
cally stationary. Above this size, perspective effects pro-
duce important scaling variations for different patches. A
joint scale-rotation-translation invariant must therefore be
applied to the scattering representation of each patch vector.
This is done with an averaging along the scale and transla-
tion variables, with a filter which is rotationally symmetric.
One could recover the high frequencies lost by this averag-
ing and compute a new layer of invariant through convo-
lutions on the joint scale-rotation-translation group. How-
ever, adding this supplementary information does not im-
prove texture classification so this last invariant is limited to
a global scale-space averaging.

The roto-translation scattering representations of all
patches at a scale 2J is given by

Sx = ⇤x ⇥ ⇥J(u) , U1x��J(p1) , U2x��J(p2)⌃ ,

with p1 = (u, �1, j1) and p2 = (u, �1, j1, �2, j2, k2). This
scattering vector Sx is not covariant to scaling. If xi(u) =
x(2iu) then

Sxi = ⇤x ⇥ ⇥J+i(2iu) , U1x��J+i(2i.p1)
U2x��J+i(2i.p2)⌃ .

with 2i.p1 = (2iu, �1, j1 + i) and 2i.p2 = (2iu, �1, j1 +
i, �2, j2+ i, k2). A covariant representation to scaling stores
the minimal subset of coefficients needed to recover all Sxi.
It thus require to compute the scattering coefficients for all
scales j1+i and j2+i for all averaging kernels ⇥J+i or �J+i,
similarly to spatial pyramid [16].

One can show that scattering coefficient amplitudes have
a power law decay as a function of the scales 2j1 and 2j2 .
To estimate an accurate average from a uniform sampling of
the variables j1 and j2, it is nessecary to bound uniformly
the variations of scattering coefficient as a function of j1 and
j2. This is done by applying a logarithm to each coefficient
of Sx, which nearly linearizes the dependency upon j1 and
j2. This logarithm plays a role which is similar to renor-
malizations used in bag of words [10] and deep convolution
networks [5].

 ✓,2j (u1, u2)



UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation Scat. Rigid Mouvt.

20 20 % 0.6%

  Rotation and Scaling Invariance
Laurent Sifre



• Energy of d interacting bodies:

Can we learn the interaction energy f(x) of a system

with x =

n

positions, values

o

?

Astronomy

Quantum Chemistry

 Learning Physics: N-Body Problem

Matthew Hirn
N. Poilvert



Kohn-Sham model:

E(�) = T (�) +
Z

�(u) V (u) +
1
2

Z
�(u)�(v)
|u� v| dudv + E

xc

(�)

Molecular

energy

At equilibrium:

   Density Functional Theory

Kinetic
energy

electron-electron

Coulomb repulsion

electron-nuclei

attraction

Exchange

correlat. energy

74

f(x) = E(⇢
x

) = min
⇢

E(⇢)



  Quantum Chemistry Invariants

stable to deformations.

Quantum chemistry: f(x) is invariant to rigid mouvements,

Depends on the true electronic density (Kohn-Sham)

Ground state

electronic density

computed with Schroedinger

Density ⇢̃
x

computed

as a sum of blobs

• Can we estimate f(x) from a naive electronic density ?



   Quantum Chemistry
Matthew Hirn

   Quantum Regression
N. Poilvert

scattering coe�cients and squared

Fourier modulus coe�cients and squared

or

�x = {�
n

(⇢̃
x

)}
n

:

f

M

(x) =
MX

k=1

w

k

�

nk(⇢̃x)

• Linear regressions computed with invariant change of variables:

Regression coe�cients wk: equivalent potential.



     Scattering Dictionary

Recover translation variability:
|⇢ ⇤  j1,✓1 | ⇤  j2,✓2(u)

Rotations ✓1

S
cales

j
1

|⇢ ⇤  j1,✓1(u)|

Combine to recover 
roto-translation variabiltiy:

||⇢ ⇤  j1,·| ⇤  j2,✓2(u)~  l2(✓1)|

⇢(u)

Recover rotation variability:
|⇢ ⇤  j1,·(u)|~  l2(✓1)



x    Scattering Regression

Regression:

78

Quantum Energy Regression using Scattering Transforms

the RMSE is due to the fact that a scattering regression has
smaller error outliers.

0 1 2 3 4 5 6 7 8 9 10
Model Complexity log (M)

1

2

3

4

5

6

7

8

�
� |
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|��

Fourier
Wavelet
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Coulomb

Figure 2. Decay of the log RMSE error
1
2 log2

h
E

⇣
|f(x)� ˜

f

M

(x)|2
⌘i

over the larger database of
4357 molecules, as a function of log2(M) in the Fourier (green),
Wavelet (blue) and Scattering (red) regressions. The dotted line
gives the Coulomb regression error for reference.

Table 1 shows that the error of Fourier and wavelet regres-
sion are of the same order although the Fourier dictionary
has 1537 elements and the wavelet dictionary has only 61.
Figure 2 gives the decay of these errors as a function of
M . This exepected error is computed on testing molecules.
The circles on the plot give the estimated value of M which
yield a minimum regression error by cross-validation over
the training set (reported in Table 1). Although the Fourier
and wavelet regressions reach nearly the same minimum
error, the decay is much faster for wavelets. When going
from the smaller to the larger database, the minimum error
of the Fourier and wavelet regressions remain nearly the
same. This shows that the bias error due to the inability of
these dictionaries to precisely regress f(x) is dominating
the variance error corresponding to errors on the regression
coefficients. The Coulomb and Scattering representations
on the other hand, achieve much smaller bias errors on the
larger database.

The number of terms of the scattering regression is M =

591 on the larger database, although the dictionary size is
11071. A very small proportion of scattering invariants are
therefore selected to perform this regression. The chosen
scattering coefficients used for the regression are coeffi-
cients corresponding to scales which fall between the min-
imum and maximum pairwise distances between atoms in
the molecular database. These selected coefficients are thus
adapted to the molecular geometries.

7. Conclusion
This paper introduced a novel intermediate molecular rep-
resentation through the use of a model electron density.
The regression is performed on a scattering transform ap-
plied to a model density built from a linear superposition of
atomic densities. This transform is well adapted to quan-
tum energy regressions because it is invariant to the per-
mutation of atom indices, to isometric transformations, it
is stable to deformations, and it separates multiscale inter-
actions. It is computed with a cascade of wavelet convolu-
tions and modulus non-linearities, as a deep convolutional
network. State-of-the-art regression accuracy is obtained
over two databases of two-dimensional organic molecules,
with a relatively small number of scattering vectors. Under-
standing the relation between the choice of scattering coef-
ficients and the physical and chemical properties of these
molecules is an important issue.

Numerical applications have been carried over planar
molecules, which allows one to restrict the electronic den-
sity to the molecular plane, and thus compute a two-
dimensional scattering transform. A scattering transform
is similarly defined in three dimensions, with the same in-
variance and stability properties. It involves computing a
wavelet transform on the two-dimensional sphere S2 in R3

(Starck et al., 2006) as opposed to the circle S

1. It entails
no mathematical difficulty, but requires appropriate soft-
ware implementations which are being carried out.

Energy regressions can also provide estimations of forces
through differentiations with respect to atomic positions.
Scattering functions are differentiable and their differential
can be computed analytically. However, the precision of
such estimations remain to be established.
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Time-Frequency Translation Group
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  Joint Time-Frequency Scattering

Original Time Scattering Time/Freq Scattering
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   Musical Instrument Classificaiton

MFCC audio descriptors 0,39

time scattering 0,31

ConvNet 0,31

time-frequency scattering 0,18

MedleyDB: 8 classes 
10k training examples

class-wise average error

clarinet electric guitar

female singer flute

piano tenor saxophone

trumpet violin

J. Anden and V. Lostanlen



Environmental Sound Classification

MFCC audio descriptors 0,39

time scattering 0,27

ConvNet 
(Piczak, MLSP 2015) 0,26

time-frequency scattering 0,2

UrbanSound8k: 10 classes 
8k training examples

class-wise average error

air conditioner car horns

children playing dog barks

drilling engine at idle

gunshot jackhammer

siren street music

J. Anden and V. Lostanlen



  Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua Ancre

Edouard Oyallon

Data Basis Deep-Net Scat/Unsupervised
CIFAR-10 7% 20%

SJx y = f(x)
x

Supervised
Linear classifier

No learning
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

 Linearisation in Deep Networks

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

• Trained on a data basis of faces:

linearization

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

• On a data basis including bedrooms: interpolaitons

A. Radford, L. Metz, S. Chintala
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 Deep Convolutional Networks

⇢L1
⇢LJ classification

• The convolution network operators       have many roles: 
– Linearize non-linear transformations (symmetries)  
– Reduce dimension with projections 
– Memory storage of « characteristic » structures 

• Difficult to separate these roles when analyzing learned networks

Lj



x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

             Open Problems

⇢L1
⇢LJ classification

• Can we recover symmetry groups from the matrices  Lj ? 
• What kind of groups ? 
• Can we characterise the regularity of  f(x)  from these groups ? 
• Can we define classes of high-dimensional « regular » functions 

that are well approximated by deep neural networks ? 
• Can we get approximation theorems giving errors depending on 

number of training exemples, with a fast decay ? 



           Conclusions
• Deep convolutional networks have spectacular high-dimensional 

approximation capabilities. 

• Seem to compute hierarchical invariants of complex symmetries 

• Used as models in physiological vision and audition 

• Close link with particle and statistical physics 

• Outstanding mathematical problem to understand them:  
    notions of complexity, regularity, approximation theorems…

Understanding Deep Convolutional Networks, arXiv 2016.


