

École Normale Supérieure www.di.ens.fr/data

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x)given n sample values $\{x_i, y_i = f(x_i)\}_{i \le n}$

Image Classification $d = 10^6$ Huge variability Joshua Tree Anchor Lotus Beaver Water Lily inside classes Find invariants

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Regression: approximate a functional f(x)given n sample values $\{x_i, y_i = f(x_i) \in \mathbb{R}\}_{i \le n}$

Physics: energy f(x) of a state vector x

Astronomy

Quantum Chemistry

Importance of symmetries.

Curse of Dimensionality

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by local interpolation if f is regular and there are close examples:

• Need e^{-d} points to cover $[0, 1]^d$ at a Euclidean distance eProblem: $||x - x_i||$ is always large

- Variables x(u) indexed by a low-dimensional u: time/space... pixels in images, particles in physics, words in text...
 - Mutliscale interactions of d variables:

From d^2 interactions to $O(\log^2 d)$ multiscale interactions.

• Multiscale analysis: wavelets on groups of symmetries. hierarchical architecture.

- 1 Hidden Layer Network, Approximation theory and Curse
- Kernel learning
- Dimension reduction with change of variables
- Deep Neural networks and symmetry groups
- Wavelet Scattering transforms
- Applications and many open questions

Understanding Deep Convolutional Networks, arXiv 2016.

Learning as an Approximation

- To estimate f(x) from a sampling $\{x_i, y_i = f(x_i)\}_{i \leq M}$ we must build an *M*-parameter approximation f_M of f.
 - Precise sparse approximation requires some "regularity".

• For binary classification
$$f(x) = \begin{cases} 1 & \text{if } x \in \Omega \\ -1 & \text{if } x \notin \Omega \end{cases}$$

$$f(x) = \operatorname{sign}(\tilde{f}(x))$$

where \tilde{f} is potentially regular.

• What type of regularity ? How to compute f_M ?

1 Hidden Layer Neural Networks

One-hidden layer neural network: ridge functions $\rho(x.w_n + b_n)$

$\rho(w_{n})$	$a \cdot x + b_n)$	$f_M(x) = \sum_{n=1}^M \alpha_n \rho(w_n \cdot x + b_n)$ $\{w_{k,k}\}_{k,n} \text{ and } \{\alpha_n\}_n \text{ are learned}$
	M	non-linear approximation.

Cybenko, Hornik, Stinchcombe, White **Theorem:** For "resonnable" bounded $\rho(u)$ and appropriate choices of $w_{n,k}$ and α_n : $\forall f \in \mathbb{L}^2[0,1]^d \quad \lim_{M \to \infty} \|f - f_M\| = 0$.

No big deal: curse of dimensionality still there.

1 Hidden Layer Neural Networks

One-hidden layer neural network:

Fourier series:
$$\rho(u) = e^{iu}$$

 $f_M(x) = \sum_{n=1}^M \alpha_n e^{iw_n \cdot x}$

For nearly all ρ : essentially same approximation results.

Piecewise Linear Approximation

Need $M = \epsilon^{-1}$ points to cover [0, 1] at a distance ϵ

$$\Rightarrow ||f - f_M|| \le C M^{-1}$$

Linear Ridge Approximation

• Piecewise linear ridge approximation: $x \in [0, 1]^d$

If f is Lipschitz: $|f(x) - f(x')| \le C ||x - x'||$ Sampling at a distance ϵ :

$$\Rightarrow |f(x) - \tilde{f}(x)| \le C \epsilon.$$

need $M = \epsilon^{-d}$ points to cover $[0, 1]^d$ at a distance ϵ

$$\Rightarrow \|f - f_M\| \le C M^{-1/d}$$

Curse of dimensionality!

Approximation with Regularity

- What prior condition makes learning possible ?
- Approximation of regular functions in $\mathbf{C}^{s}[0,1]^{d}$:
- $\forall x, u \quad |f(x) p_u(x)| \le C |x u|^s \text{ with } p_u(x) \text{ polynomial}$

Need $M^{-d/s}$ point to cover $[0,1]^d$ at a distance $\epsilon^{1/s}$

$$\Rightarrow \|f - f_M\| \le C M^{-s/d}$$

• Can not do better in $\mathbf{C}^{\mathbf{s}}[0,1]^d$, not good because $s \ll d$. Failure of classical approximation theory. **Kernel Learning**

Change of variable $\Phi(x) = \{\phi_k(x)\}_{k \le d'}$

to nearly linearize f(x), which is approximated by:

- How and when is possible to find such a Φ ?
- What "regularity" of f is needed ?

Increase Dimensionality

Proposition: There exists a hyperplane separating any two subsets of N points $\{\Phi x_i\}_i$ in dimension d' > N + 1if $\{\Phi x_i\}_i$ are not in an affine subspace of dimension < N.

 \Rightarrow Choose Φ increasing dimensionality !

Problem: generalisation, overfitting.

Example: Gaussian kernel $\langle \Phi(x), \Phi(x') \rangle = \exp\left(\frac{-\|x - x'\|^2}{2\sigma^2}\right)$

 $\Phi(x)$ is of dimension $d' = \infty$

If σ is small, nearest neighbor classifier type:

Reduction of Dimensionality

- Discriminative change of variable $\Phi(x)$: $\Phi(x) \neq \Phi(x')$ if $f(x) \neq f(x')$ $\Rightarrow \exists \tilde{f} \text{ with } f(x) = \tilde{f}(\Phi(x))$
 - If \tilde{f} is Lipschitz: $|\tilde{f}(z) \tilde{f}(z')| \le C ||z z'||$ $z = \Phi(x) \iff |f(x) - f(x')| \le C ||\Phi(x) - \Phi(x')||$ Discriminative: $||\Phi(x) - \Phi(x')|| \ge C^{-1} |f(x) - f(x')|$

• For $x \in \Omega$, if $\Phi(\Omega)$ is bounded and a low dimension d' $\Rightarrow \|f - f_M\| \le C M^{-1/d'}$

Deep Convolution Neworks

• The revival of neural networks: Y. LeCun

Optimize L_j with architecture constraints: over 10⁹ parameters Exceptional results for *images, speech, language, bio-data...* Why does it work so well ? A difficult problem

ImageNet Data Basis

• Data basis with 1 million images and 2000 classes

Alex Deep Convolution Network

 A. Krizhevsky, Sutsever, Hinton
Imagenet supervised training: 1.2 10⁶ examples, 10³ classes 15.3% testing error in 2012

New networks with 5% errors. Up to 150 layers!

Image Classification

grine	mushivoni	citoriy	madagascar car
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

Scene Labeling / Car Driving

Why Understading ?

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus

with $\|\epsilon\| < 10^{-2} \|x\|$

 $\epsilon = \tilde{x}$ \mathcal{X} correctly classified as classified ostrich

• Trial and error testing can not guarantee reliability.

Deep Convolutional Networks

• L_j is a linear combination of convolutions and subsampling:

$$x_{j}(u,k_{j}) = \rho\left(\sum_{\substack{k \\ \text{sum across channels}}} x_{j-1}(\cdot,k) \star h_{k_{j},k}(u)\right)$$

• ρ is contractive: $|\rho(u) - \rho(u')| \le |u - u'|$ $\rho(u) = \max(u, 0) \text{ or } \rho(u) = |u|$

Linearisation in Deep Networks

A. Radford, L. Metz, S. Chintala

• On a data basis including bedrooms: interpolaitons

- Why convolutions ? Translation covariance.
- Why no overfitting ? Contractions, dimension reduction
- Why hierarchical cascade ?
- Why introducing non-linearities ?
- How and what to linearise ?
- What are the roles of the multiple channels in each layer ?

If level sets (classes) are parallel to a linear space then variables are eliminated by linear projections: *invariants*.

- If level sets Ω_t are not parallel to a linear space
 - Linearise them with a change of variable $\Phi(x)$
 - Then reduce dimension with linear projections
- Difficult because Ω_t are high-dimensional, irregular, known on few samples.

Level Set Geometry: Symmetries

• Curse of dimensionality \Rightarrow not local but global geometry Level sets: classes, characterised by their global symmetries.

• A symmetry is an operator g which preserves level sets:

$$\forall x , f(g.x) = f(x) : global$$

If g_1 and g_2 are symmetries then $g_1.g_2$ is also a symmetry $f(g_1.g_2.x) = f(g_2.x) = f(x)$

• Group of dimension n if it has n generators:

$$g = g_1^{p_1} \, g_2^{p_2} \dots g_n^{p_n}$$

• Lie group: infinitely small generators (Lie Algebra)

Translation and Deformations

• Digit classification:

$$u) \qquad x'(u) = x(u - \tau(u))$$

 $\mathcal{X}($

ENS

- Globally invariant to the translation group: small
- Locally invariant to small diffeomorphisms: huge group

Video of Philipp Scott Johnson

Frequency Transpositions

H : Heisenberg group of "time-frequency" translations

Frequency Transpositions

Time and frequency translations and deformations:

• Frequency transposition invariance is needed

for speech recognition not for locutor recognition.

Rotation and Scaling Variability

• Rotation and deformations

Group: $SO(2) \times \text{Diff}(SO(2))$

• Scaling and deformations

Group: $\mathbb{R} \times \text{Diff}(\mathbb{R})$

Linearize Symmetries

• A change of variable $\Phi(x)$ must linearize the orbits $\{g.x\}_{g\in G}$

• Linearise symmetries with a change of variable $\Phi(x)$

• Lipschitz: $\forall x, g$: $\|\Phi(x) - \Phi(g.x)\| \le C \|g\|$

Translation and Deformations

• Digit classification:

- Globally invariant to the translation group
- Locally invariant to small diffeomorphisms

Linearize small diffeomorphisms: \Rightarrow Lipschitz regular

Video of Philipp Scott Johnson

Translations and Deformations

• Invariance to translations:

$$g.x(u) = x(u-c) \Rightarrow \Phi(g.x) = \Phi(x)$$
.

• Small diffeomorphisms: $g.x(u) = x(u - \tau(u))$ Metric: $||g|| = ||\nabla \tau||_{\infty}$ maximum scaling Linearisation by Lipschitz continuity

$$\|\Phi(x) - \Phi(g.x)\| \le C \|\nabla \tau\|_{\infty}.$$

• Discriminative change of variable: $\|\Phi(x) - \Phi(x')\| \ge C^{-1} |f(x) - f(x')|$ Fourier Deformation Instability

• Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$

$$x_c(t) = x(t-c) \implies \hat{x}_c(\omega) = e^{-ic\omega} \hat{x}(\omega)$$

The modulus is invariant to translations:

 $\Phi(x) = |\hat{x}| = |\hat{x}_c|$

• Instabilites to small deformations $x_{\tau}(t) = x(t - \tau(t))$: $||\hat{x}_{\tau}(\omega)| - |\hat{x}(\omega)||$ is big at high frequencies $\tau(t) = \epsilon t \quad |\hat{x}_{\tau}(\omega)| \quad |\hat{x}(\omega)|$ $\longrightarrow \quad ||\hat{x}| - |\hat{x}_{\tau}|| \gg ||\nabla \tau||_{\infty} ||x||$

École Normale Supérieure www.di.ens.fr/data

Deep Convolutional Trees

 L_j is composed of convolutions and subs samplings:

$$x_j(u,k_j) = \rho\Big(x_{j-1}(\cdot,k) \star h_{k_j,k}(u)\Big)$$

No channel communication: how far can we go? Why hierachical cascade? **Translations and Deformations**

• Invariance to translations:

$$g.x(u) = x(u-c) \Rightarrow \Phi(g.x) = \Phi(x)$$
.

• Small diffeomorphisms: $g.x(u) = x(u - \tau(u))$ Metric: $||g|| = ||\nabla \tau||_{\infty}$ maximum scaling Linearisation by Lipschitz continuity

$$\|\Phi(x) - \Phi(g.x)\| \le C \|\nabla \tau\|_{\infty}.$$

• Discriminative change of variable: $\|\Phi(x) - \Phi(x')\| \ge C^{-1} |f(x) - f(x')|$

- Wavelet Scattering transform along translations
- Generation of textures and random processes
- Channel connections for more general groups
- Image and audio classification with small training sets
- Quantum chemistry
- Open problems

Understanding Deep Convolutional Networks, arXiv 2016.

Multiscale Wavelet Transform

• Dilated wavelets: $\psi_{\lambda}(t) = 2^{-j/Q} \psi(2^{-j/Q}t)$ with $\lambda = 2^{-j/Q}$

$$x \star \psi_{\lambda}(t) = \int x(u) \,\psi_{\lambda}(t-u) \,du \; \Rightarrow \; x \star \psi_{\lambda}(\omega) = \widehat{x}(\omega) \,\psi_{\lambda}(\omega)$$

• Wavelet transform:
$$Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\lambda \leq 2^J}$$
: average frequencies

Preserves norm: $||Wx||^2 = ||x||^2$.

Why Wavelets ?

if
$$\psi_{\lambda,\tau}(t) = \psi_{\lambda}(t - \tau(t))$$
 then

$$\|\psi_{\lambda} - \psi_{\lambda,\tau}\| \le C \sup_{t} |\nabla \tau(t)|$$

• Wavelets separate multiscale information.

• Wavelets provide sparse representations.

Singular Functions

Wavelet Translation Invariance

Modulus improves invariance: $|x \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}^a(x) + \psi_{\lambda_1}^a(x) \star \psi_{\lambda_1}^a(x) + \psi_{\lambda_1}^a(x) \star \psi_{\lambda_1}^a(x) + \psi_{\lambda_1$

Second wavelet transform modulus

$$|W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi_{2J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{array} \right)_{\lambda_2}$$

Singular Functions

Amplitude Modulation

Harmonic sound: $x(t) = a(t) e \star h(t)$ with varying a(t)

Scale separation with Wavelets

• Wavelet filter $\psi(u)$: = +i =

rotated and dilated: $\psi_{2^{j},\theta}(u) = 2^{-j} \psi(2^{-j}r_{\theta}u)$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^{J}}(u) \\ x \star \psi_{2^{j},\theta}(u) \end{pmatrix}_{j \leq J,\theta}$: average index in the integral of the transform.

Preserves norm: $||Wx||^2 = ||x||^2$.

 $Hx(u) = x \star h(2u)$ and $Gx(u) = x \star g(2u)$

where h is a low frequency and g is a high frequency filter.

Fast Wavelet Filter Bank

Wavelet Convolution Network Tree

 $S_4 x = |L_4| |L_3| |L_2| |L_1| x = |W_4| |W_3| |W_2| |W_1| x$

Contraction

 $Wx = \begin{pmatrix} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{t,\lambda} \text{ is linear and } ||Wx|| = ||x||$ $\rho(u) = |u|$ $|W|x = \begin{pmatrix} x \star \phi(t) \\ |x \star \psi_{\lambda}(t)| \end{pmatrix}_{t,\lambda} \text{ is non-linear}$

- it is contractive $|||W|x |W|y|| \le ||x y||$ because for $(a, b) \in \mathbb{C}^2$ $||a| - |b|| \le |a - b|$
- it preserves the norm |||W|x|| = ||x||

 $\texttt{Wnanka:} \| \texttt{W}[W_k, \mathcal{D}_{\tau}] \| W_k \texttt{W}_k \mathcal{W}_k \mathcal{D}_k \texttt{W}_k \texttt{$

Theorem: For appropriate wavelets, a scattering is contractive $||S_J x - S_J y|| \le ||x - y||$ (L² stability) preserves norms $||S_J x|| = ||x||$

translations invariance and deformation stability: if $D_{\tau}x(u) = x(u - \tau(u))$ then $\lim_{J \to \infty} \|S_J D_{\tau}x - S_J x\| \le C \|\nabla \tau\|_{\infty} \|x\|$

Digit Classification: MNIST

3681796691

6757863485

2179712845

4819018894

Joan Bruna

 $\rightarrow y = f(x)$

Invariants to translations Linearises small deformations No learning Invariants to specific deformations Separates different patterns

Classification Errors

Training size	Conv. Net.	Scattering	
50000	0.4%	0.4%	
LeCun et. al.			

Classification of Stationary Textures -

 Ω_1

2D Turbulence

- What stochastic models ? Non Gaussian with long-range dependance.
 - Can we "Gaussianize" (linearize) such distributions in a reduced dimensional space ?

Classification of Textures

J. Bruna

CUREt database

Classification Errors

Training	Fourier	Scattering
per class	Spectr.	
46	1%	0.2 %

Scattering Moments of Processes

The scattering transform of a stationary process X(t)

$$S_{J}X = \begin{pmatrix} X \star \phi_{2^{J}}(t) \\ |X \star \psi_{\lambda_{1}}| \star \phi_{2^{J}}(t) \\ ||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}}(t) \\ |||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2^{J}}(t) \\ \dots \end{pmatrix}^{1} : \text{ stationary vector}$$
$$J \to \infty \begin{vmatrix} \text{Central limit theorem} \\ \text{with "weak" ergodicity conditions} \\ \text{Gaussian distribution: } \mathcal{N}\Big(\mathbb{E}(SX), \Sigma_{J} \to 0\Big) \\ \mathbb{E}(SX) = \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_{1}}|) \\ \mathbb{E}(||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}|) \\ \mathbb{E}(||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}|) \\ \dots \end{pmatrix}^{1}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots}$$

Scattering Moments of Processes

The scattering transform of a stationary process X(t)

$$S_{J}X = \begin{pmatrix} X \star \phi_{2^{J}}(t) \\ |X \star \psi_{\lambda_{1}}| \star \phi_{2^{J}}(t) \\ ||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}}(t) \\ ||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2^{J}}(t) \\ \dots \end{pmatrix} : \text{ statistic}$$

: stationary vector

 $J \to \infty$ Central limit theorem with "weak" ergodicity conditions

Gaussian distribution:
$$\mathcal{N}\Big(\mathbb{E}(SX), \Sigma_J \to 0\Big)$$

• Reconstruction: compute \tilde{X} which minimises $\|S_J \tilde{X} - S_J X\|^2$

• Gradient descent

Representation of Audio Textures

Cocktail Party

Ergodic Texture Reconstructions

Joan Bruna

Textures of N pixels

2D Turbulence

Gaussian process model with N second order moments

Second order Gaussian Scattering: $O(\log N^2)$ moments $\mathbb{E}(|x \star \psi_{\lambda_1}|)$, $\mathbb{E}(||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|)$

Ising Model and Inverse Problem

	Bruna, Dokmanic, Maarten de Hoo					
		$p(x) = Z_{\beta}^{-1} \exp \left[-\frac{1}{2} \exp \left[-\frac{1}$	$\left(-\beta \sum J_{i,j} x(t)\right)$	i(x(j)) with	$x(i) = \pm 1$	
	Ising	Gaussian <u>scattering</u>	$\underline{i,j}$ low-resolution	<u>TV optim.</u>	Scat pred.	
eta_c						
β						

Deep Convolutional Trees

 L_j is composed of convolutions and subs samplings:

$$x_j(u,k_j) = \rho\Big(x_{j-1}(\cdot,k) \star h_{k_j,k}(u)\Big)$$

No channel communication: what limitations ?

Rotation and Scaling Invariance

20

UIUC database: 25 classes

ENS

20 %

Laurent Sifre

Deep Convolutional Networks

• L_j is a linear combination of convolutions and subsampling:

$$x_{j}(u, k_{j}) = \rho \left(\sum_{\substack{k \\ \text{sum across channels}}} x_{j-1}(\cdot, k) \star h_{k_{j}, k}(u) \right)$$

What is the role of channel connections ? Linearize other symmetries beyond translations.

Rotation Invariance

• Channel connections linearize other symmetries.

ENS

 Invariance to rotations are computed by convolutions along the rotation variable θ with wavelet filters.
 ⇒ invariance to rigid mouvements.

Extension to Rigid Mouvements

Laurent Sifre

Need to capture the variability of spatial directions.

- Group of rigid displacements: translations and rotations
- Action on wavelet coefficients:

rotation & translation rotation & translation , angle translation
$$x(r_{\alpha}(u \, x(u)) \longrightarrow |W_1| \longrightarrow x_j(u_{\alpha}(\theta) = c_{\beta}, \theta \, \psi_2 \rho_{\theta})(u)|$$

Extension to Rigid Mouvements

Laurent Sifre

• To build invariants: second wavelet transform on $L^{2}(G)$: convolutions of $x_j(u,\theta)$ with wavelets $\psi_{\lambda_2}(u,\theta)$

$$x \circledast \psi_{\lambda}(u,\theta) = \int_{0}^{2\pi} \left(\int_{\mathbb{R}^{2}} x(u',\theta') \psi_{\theta,2^{j}}(r_{-\theta'}(u-u')) \right) \psi_{2^{k}}(\theta-\theta') d\theta' dt'$$

Wavelets

• Scattering on rigid mod
Wavelets on Translations
$$\langle W \rangle$$

 $x(u) \rightarrow |W_1| \rightarrow x_j(u, \theta)$
 $\int x(u) du$
 $\int x_j(u, \theta) du d\theta^{u_1} \int |x_j \otimes \psi_{\lambda_2}(v, \theta)| du d\theta$

Rotation and Scaling Invariance ENS

UIUC database: 25 classes

Laurent Sifre

Scattering classification errors

Learning Physics: N-Body Problem

• Energy of d interacting bodies:

N. Poilvert Matthew Hirn

Can we learn the interaction energy f(x) of a system with $x = \{ \text{positions, values} \}$?

Astronomy

Quantum Chemistry

Density Functional Theory

Kohn-Sham model:

At equilibrium:

$$f(x) = E(\rho_x) = \min_{\rho} E(\rho)$$

Quantum Chemistry Invariants

Quantum chemistry: f(x) is invariant to rigid mouvements, stable to deformations.

Depends on the true electronic density (Kohn-Sham)

Ground state electronic density computed with Schroedinger

• Can we estimate f(x) from a naive electronic density ?

Density $\tilde{\rho}_x$ computed as a sum of blobs

• Linear regressions computed with invariant change of variables:

 $\Phi x = \{\phi_n(\tilde{\rho}_x)\}_n : \left| \begin{array}{c} \text{Fourier modulus coefficients and squared} \\ \text{scattering coefficients and squared} \end{array} \right.$

$$f_M(x) = \sum_{k=1}^M w_k \, \phi_{n_k}(\tilde{\rho}_x)$$

Regression coefficients w_k : equivalent potential.

Scattering Dictionary

 $\rho(u)$

2nd Order Interferences

Recover translation variability: $|\rho * \psi_{j_1,\theta_1}| * \psi_{j_2,\theta_2}(u)$

• Recover rotation variability: $|\rho * \psi_{j_1,\cdot}(u)| \circledast \overline{\psi}_{l_2}(\theta_1)$

Combine to recover roto-translation variabiltiy:

 $\left\|\rho * \psi_{j_1,\cdot}\right\| * \psi_{j_2,\theta_2}(u) \circledast \overline{\psi}_{l_2}(\theta_1)\right\|$

Scattering Regression

Data basis $\{x_i, f(x_i)\}_{i \leq N}$ of 4357 planar molecules M

ENS

Time-Frequency Translation Group

J. Anden and V. Lostanlen

Joint Time-Frequency Scattering

J. Anden and V. Lostanl

Original

Time Scattering

Time/Freq Scattering

Musical Instrument Classificaiton

clarinet

female singer

piano

trumpet

tenor saxophone

violin

J. Anden and V. Lostanlen

MedleyDB: 8 classes 10k training examples

class-wise average error 0,39 MFCC audio descriptors 0,31 time scattering ConvNet 0,31 0,18 time-frequency scattering

Environmental Sound Classification -

air conditioner

children playing

drilling

gunshot

siren

J. Anden and V. Lostanlen

UrbanSound8k: 10 classes 8k training examples

class-wise average error

MFCC audio descriptors	0,39
time scattering	0,27
ConvNet (Piczak, MLSP 2015)	0,26
time-frequency scattering	0,2

Complex Image Classification

Arbre de Joshua

ΕN

Ancre

Metronome

Castore

Nénuphare

Edouard Oyallon

Data Basis	Deep-Net	Scat/Unsupervised
CIFAR-10	7%	20%

Linearisation in Deep Networks

A. Radford, L. Metz, S. Chintala

• On a data basis including bedrooms: interpolaitons

- The convolution network operators L_j have many roles:
 - Linearize non-linear transformations (symmetries)
 - Reduce dimension with projections
 - Memory storage of « characteristic » structures
- Difficult to separate these roles when analyzing learned networks

- Can we recover symmetry groups from the matrices *Lj*?
- What kind of groups ?
- Can we characterise the regularity of f(x) from these groups ?
- Can we define classes of high-dimensional « regular » functions that are well approximated by deep neural networks ?
- Can we get approximation theorems giving errors depending on number of training exemples, with a fast decay ?

Conclusions

- Deep convolutional networks have spectacular high-dimensional approximation capabilities.
- Seem to compute hierarchical invariants of complex symmetries
- Used as models in physiological vision and audition
- Close link with particle and statistical physics
- Outstanding mathematical problem to understand them: notions of complexity, regularity, approximation theorems...

Understanding Deep Convolutional Networks, arXiv 2016.