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The linear bandit problem, Auer [2002]
Known parameters: compact action set A ⊂ Rn, adversary’s
action set L ⊂ Rn, number of rounds T .

Protocol: For each round t = 1, 2, . . . ,T , the adversary chooses a
loss vector `t ∈ L and simultaneously the player chooses at ∈ A
based on past observations and receives a loss/observation
Yt = `>t at .

RT = E
T∑
t=1

`>t at −min
a∈A

E
T∑
t=1

`>t a.

Other models: In the i.i.d. model we assume that there is some
underlying θ ∈ L such that E(Yt |at) = θ>at . In the Bayesian
model we assume that we have a prior distribution ν over the
sequence (`1, . . . , `T ) (in this case the expectation in RT is also
over (`1, . . . , `T ) ∼ ν). Alternatively we could assume a prior over
θ.
Example: Part 1 was about A = {e1, . . . , en} and L = [0, 1]n.
Assumption: unless specified otherwise we assume
L = A◦ := {` : supa∈A |`>a| ≤ 1}.
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Thompson Sampling for linear bandit after RVR14
Assume A = {a1, . . . , a|A|}. Recall from Part 1 that TS satisfies∑

i

πt(i)(¯̀
t(i)− ¯̀

t(i , i)) ≤
√

C
∑
i ,j

πt(i)πt(j)(¯̀
t(i , j)− ¯̀

t(i))2

⇒ RT ≤
√

C T log(|A|)/2,

where ¯̀
t(i) = Et`t(i) and ¯̀

t(i , j) = Et(`t(i)|i∗ = j).

Writing ¯̀
t(i) = a>i

¯̀
t , ¯̀

t(i , j) = a>i
¯̀j
t , and

(Mi ,j) =
(√

πt(i)πt(j)a
>
i (¯̀

t − ¯̀j
t)
)

we want to show that

Tr(M) ≤
√
C‖M‖F .

Using the eigenvalue formula for the trace and the Frobenius norm
one can see that Tr(M)2 ≤ rank(M)‖M‖2

F . Moreover the rank of
M is at most n since M = UV> where U,V ∈ R|A|×n (the i th row
of U is

√
πt(i)ai and for V it is

√
πt(i)(¯̀

t − ¯̀i
t)).
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Thompson Sampling for linear bandit after RVR14

1. TS satisfies RT ≤
√
nT log(|A|). To appreciate the

improvement recall that without the linear structure one would
get a regret of order

√
|A|T and that A can be exponential in

the dimension n (think of the path planning example).

2. Provided that one can efficiently sample from the posterior on
`t (or on θ), TS just requires at each step one linear
optimization over A.

3. TS regret bound is optimal in the following sense. W.l.og.
one can assume |A| ≤ (10T )n and thus TS satisfies
RT = O(n

√
T log(T )) for any action set. Furthermore one

can show that there exists an action set and a prior such that
for any strategy one has RT = Ω(n

√
T ), see Dani, Hayes and

Kakade [2008], Rusmevichientong and Tsitsiklis [2010], and
Audibert, Bubeck and Lugosi [2011, 2014].
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Adversarial linear bandit after Dani, Hayes, Kakade [2008]

Recall from Part 1 that exponential weights satisfies for any ˜̀t
such that E˜̀t(i) = `t(i) and ˜̀t(i) ≥ 0,

RT ≤
maxi Ent(δi‖p1)

η
+
η

2
E
∑
t

EI∼pt
˜̀
t(I )

2.

DHK08 proposed the following (beautiful) unbiased estimator for
the linear case:

˜̀
t = Σ−1

t ata
>
t `t where Σt = Ea∼pt (aa

>).

Again, amazingly, the variance is automatically controlled:

E(Ea∼pt (
˜̀>
t a)2) = E˜̀>t Σt

˜̀
t ≤ Ea>t Σ−1

t at = ETr(Σ−1
t atat) = n.

Up to the issue that ˜̀t can take negative values this suggests the
“optimal”

√
nT log(|A|) regret bound.
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Adversarial linear bandit, further development
1. The non-negativity issue of ˜̀t is a manifestation of the need

for an added exploration. DHK08 used a suboptimal
exploration which led to an additional

√
n in the regret. This

was later improved in Bubeck, Cesa-Bianchi, and Kakade
[2012] with an exploration based on the John’s ellipsoid
(smallest ellipsoid containing A).

2. Sampling the exp. weights is usually computationally difficult,
see Cesa-Bianchi and Lugosi [2009] for some exceptions.

3. Abernethy, Hazan and Rakhlin [2008] proposed an alternative
(beautiful) strategy based on mirror descent. The key idea is
to use a n-self-concordant barrier for conv(A) as a mirror map
and to sample points uniformly in Dikin ellipses. This
method’s regret is suboptimal by a factor

√
n and the

computational efficiency depends on the barrier being used.
4. Bubeck and Eldan [2014]’s entropic barrier allows for a much

more information-efficient sampling than AHR08. This gives
another strategy with optimal regret which is efficient when A
is convex (and one can do linear optimization on A).
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Adversarial combinatorial bandit after Audibert, Bubeck
and Lugosi [2011, 2014]

Combinatorial setting: A ⊂ {0, 1}n, maxa ‖a‖1 = m, L = [0, 1]n.

1. Full information case goes back to the end of the 90’s
(Warmuth and co-authors), semi-bandit and bandit were
introduced in Audibert, Bubeck and Lugosi [2011] (following
several papers that studied specific sets A).

2. This is a natural setting to study FPL-type (Follow the
Perturbed Leader) strategies, see e.g. Kalai and Vempala
[2004] and more recently Devroye, Lugosi and Neu [2013].

3. ABL11: Exponential weights is provably suboptimal in this
setting! This is in sharp contrast with the case where L = A◦.

4. Optimal regret in the semi-bandit case is
√
mnT and it can be

achieved with mirror descent and the natural unbiased
estimator for the semi-bandit situation.

5. For the bandit case the bound for exponential weights from
the previous slides gives m

√
mnT . However the lower bound

from ABL14 is m
√
nT , which is conjectured to be tight.
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Preliminaries for the i.i.d. case: a primer on least squares
Assume Yt = θ>at + ξt where (ξt) is an i.i.d. sequence of centered
and sub-Gaussian real-valued random variables. The (regularized)
least squares estimator for θ based on Yt = (Y1, . . . ,Yt−1)> is,
with At = (a1 . . . at−1) ∈ Rn×t−1 and Σt = λIn +

∑t−1
s=1 asa

>
s :

θ̂t = Σ−1
t AtYt

Observe that we can also write θ = Σ−1
t (At(Yt + εt) + λθ) where

εt = (E(Y1|a1)− Y1, . . . ,E(Yt−1|at−1)− Yt−1)> so that

‖θ − θ̂t‖Σt = ‖Atεt + λθ‖Σ−1
t
≤ ‖Atεt‖Σ−1

t
+
√
λ‖θ‖.

A basic martingale argument (see e.g., Abbasi-Yadkori, Pál and
Szepesvári [2011]) shows that w.p. ≥ 1− δ, ∀t ≥ 1,

‖Atεt‖Σ−1
t
≤
√
logdet(Σt) + log(1/(δ2λn)).

Note that logdet(Σt) ≤ n log(Tr(Σt)/n) ≤ n log(λ+ t/n) (w.l.o.g.
we assumed ‖at‖ ≤ 1).
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i.i.d. linear bandit after DHK08, RT10, AYPS11
Let β = 2

√
n log(T ), and Et = {θ′ : ‖θ′ − θ̂t‖Σt ≤ β}. We showed

that w.p. ≥ 1− 1/T 2 one has θ ∈ Et for all t ∈ [T ].

The appropriate generalization of UCB is to select:
(θ̃t , at) = argmin(θ′,a)∈Et×A θ

′>a (this optimization is NP-hard in
general, more on that next slide). Then one has on the
high-probability event:

T∑
t=1

θ>(at−a∗) ≤
T∑
t=1

(θ−θ̃t)>at ≤ β
T∑
t=1

‖at‖Σ−1
t
≤ β

√
T
∑
t

‖at‖2
Σ−1

t

.

To control the sum of squares we observe that:

det(Σt+1) = det(Σt) det(In+Σ
−1/2
t at(Σ

−1/2
t at)

>) = det(Σt)(1+‖at‖2
Σ−1

t
)

so that (assuming λ ≥ 1)

log det(ΣT+1)−log det(Σ1) =
∑
t

log(1+‖at‖2
Σ−1

t
) ≥ 1

2

∑
t

‖at‖2
Σ−1

t
.

Putting things together we see that the regret is O(n log(T )
√
T ).
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What’s the point of i.i.d. linear bandit?
So far we did not get any real benefit from the i.i.d. assumption
(the regret guarantee we obtained is the same as for the adversarial
model). To me the key benefit is in the simplicity of the i.i.d.
algorithm which makes it easy to incorporate further assumptions.

1. Sparsity of θ: instead of regularization with `2-norm to define
θ̂ one could regularize with `1-norm, see e.g., Johnson,
Sivakumar and Banerjee [2016].

2. Computational constraint: instead of optimizing over Et to
define θ̃t one could optimize over a hypercube containing Et
(this would cost an extra

√
n in the regret bound).

3. Generalized linear model: E(Yt |at) = σ(θ>at) for some
known increasing σ : R→ R, see Filippi, Cappe, Garivier and
Szepesvari [2011].

4. log(T )-regime: if A is finite (note that a polytope is
effectively finite for us) one can get n2 log2(T )/∆ regret:

RT ≤ E
T∑
t=1

(θ>(at − a∗))2

∆
≤ β2

∆
E

T∑
t=1

‖at‖2
Σ−1

t
.

n2 log2(T )

∆
.
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Some non-linear bandit problems
Lipschitz bandit: Kleinberg, Slivkins and Upfal [2008, 2016], Bubeck, Munos, Stoltz and Szepesvari [2008, 2011];

Gaussian process bandit: Srinivas, Krause, Kakade and Seeger [2010]; and convex bandit:

Kleinberg 04
RT . n3T 3/4

FKM 05
RT .

√
nT 3/4
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RL
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√
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Contextual bandit

We now make the game-changing assumption that at the
beginning of each round t a context xt ∈ X is revealed to the
player. The ideal notion of regret is now:

Rctx
T =

T∑
t=1

`t(at)− inf
Φ:X→A

T∑
t=1

`t(Φ(xt)).

Sometimes it makes sense to restrict the mapping from contexts to
actions, so that the infimum is taken over some policy set Π ⊂ AX .

As far as I can tell the contextual bandit problem is an infinite
playground and there is no canonical solution (or at least not yet!).
Thankfully all we have learned so far can give useful guidance in
this challenging problem.
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Linear model after embedding
A natural assumption in several application domains is to suppose
linearity in the loss after a correct embedding. Say we know
mappings (ϕa)a∈A such that Et(`t(a)) = ϕa(xt)

>θ for some
unknown θ ∈ Rn (or in the adversarial case that `t(a) = `>t ϕa(xt)).

This is nothing but a linear bandit problem where the action set is
changing over time. All the strategies we described are robust to
this modification and thus in this case one can get a regret of√

nT log(|A|) . n
√

T log(T ) (and for the stochastic case one can
get efficiently n3/2

√
T ).

A much more challenging case is when the correct embedding
ϕ = (ϕa)a∈A is only known to belong to some class Φ. Without
further assumptions on Φ we are basically back to the general
model. Also note that a natural impulse is to run “bandits on top
of bandits”, that is first select some ϕt ∈ Φ and then select at
based on the assumption that ϕt is correct. We won’t get into this
here, but let us investigate a related idea.
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Exp4, Auer, Cesa-Bianchi, Freund and Schapire [2001]
One can play exponential weights on the set of policies with the
following unbiased estimator (obvious notation: `t(π) = `t(π(xt)),
πt ∼ pt , and at = πt(xt))

˜̀
t(π) =

1{π(xt) = at}∑
π′:π′(xt)=at

pt(π′)
`t(at).

Easy exercise: Rctx
T ≤

√
2T |A| log(|Π|) (indeed the relative

entropy term is smaller than log(|Π|) while the variance term is
exactly |A|).
The only issue of this strategy is that the computationally
complexity is linear in the policy space, which might be huge. A
year and half ago a major paper by Agarwal, Hsu, Kale, Langford,
Li and Schapire was posted, with a strategy obtaining the same
regret as Exp4 (in the i.i.d. model) but which is also
computationally efficient with an oracle for the offline problem
(i.e., minπ∈Π

∑T
t=1 `t(π(xt))). Unfortunately the algorithm is not

simple enough yet to be included in these slides.
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The statistician perspective, after Goldenshluger and Zeevi
[2009, 2011], Perchet and Rigollet [2011]

Let X ⊂ Rd , A = [n], (xt) i.i.d. from some µ absolutely
continuous w.r.t. Lebesgue. The reward for playing arm a under
context x is drawn from some distribution νa(x) on [0, 1] with
mean function fa(x) which is assumed to be β-Holder smooth. Let
∆(x) be the “gap” function.

A key parameter is the proportion of contexts with a small gap.
The margin assumption is that for some α > 0, one has

µ({x : ∆(x) ∈ (0, δ)}) ≤ Cδα,∀δ ∈ (0, 1].

One can achieve a regret of order T
(
n log(n)

T

)β(α+1)
2β+d

, which is

optimal at least in the dependency on T . It can be achieved by
running Successive Elimination on an adaptively refined partition of
the space, see Perchet and Rigollet [2011] for the details.
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The online multi-class classification perspective after
Kakade, Shalev-Shwartz, and Tewari [2008]

Here the loss is assumed to be of the following very simple form:
`t(a) = 1{a 6= a∗t }. In other words using the context xt one has to
predict the best action (which can be interpreted as a class)
a∗t ∈ [n].

KSST08 introduces the banditron, a bandit version of the
multi-class perceptron for this problem. While with full information
the online multi-class perceptron can be shown to satisfy a
“regret” bound on of order

√
T , the banditron attains only a

regret of order T 2/3. See also Chapter 4 in Bubeck and
Cesa-Bianchi [2012] for more on this.
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Summary of advanced results

1. The optimal regret for the linear bandit problem is Õ(n
√
T ).

In the Bayesian context Thompson Sampling achieves this
bound. In the i.i.d. case one can use an algorithm based on
the optimism in face of uncertainty together with
concentration properties of the least squares estimator.

2. The i.i.d. algorithm can easily be modified to be
computationally efficient, or to deal with sparsity in the
unknown vector θ.

3. Extensions/variants: semi-bandit model, non-linear bandit
(Lipschitz, Gaussian process, convex).

4. Contextual bandit is still a very active subfield of bandit
theory.

5. Many important things were omitted. Example: knapsack
bandit, see Badanidiyuru, Kleinberg and Slivkins [2013].



Some open problems we discussed

1. Prove the lower bound ERT = Ω(
√

Tn log(n)) for the
adversarial n-armed bandit with adaptive adversary.

2. Guha and Munagala [2014] conjecture: for product priors, TS
is a 2-approximation to the optimal Bayesian strategy for the
objective of minimizing the number of pulls on suboptimal
arms.

3. Find a “simple” strategy achieving the Bubeck and Slivkins
[2012] best of both worlds result.

4. For the combinatorial bandit problem, find a strategy with
regret at most n3/2

√
T (current best is n2

√
T ).

5. Is there a computationally efficient strategy for i.i.d. linear
bandit with optimal n

√
T gap-free regret and with log(T )

gap-based regret?

6. Is there a natural framework to think about “bandits on top
of bandits” (while keeping

√
T -regret)?


