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i.i.d. multi-armed bandit, Robbins [1952]

Known parameters: number of arms n and (possibly) number of
rounds T ≥ n.
Unknown parameters: n probability distributions ν1, . . . , νn on
[0, 1] with mean µ1, . . . , µn (notation: µ∗ = maxi∈[n] µi ).

Protocol: For each round t = 1, 2, . . . ,T , the player chooses
It ∈ [n] based on past observations and receives a
reward/observation Yt ∼ νIt (independently from the past).

Performance measure: The cumulative regret is the difference
between the player’s accumulated reward and the maximum the
player could have obtained had she known all the parameters,

RT = Tµ∗ − E
∑
t∈[T ]

Yt .

Fundamental tension between exploration and exploitation.
Many applications!
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i.i.d. multi-armed bandit: fundamental limitations
How small can we expect RT to be? Consider the 2-armed case
where ν1 = Ber(1/2) and ν2 = Ber(1/2 + ξ∆) where ξ ∈ {−1, 1}
is unknown.

With τ expected observations from the second arm there is a
probability at least exp(−τ∆2) to make the wrong guess on the
value of ξ. Let τ(t) be the expected number of pulls of arm 2
when ξ = −1.

RT (ξ = +1) + RT (ξ = −1) ≥ ∆τ(T ) + ∆
T∑
t=1

exp(−τ(t)∆2)

≥ ∆ min
t∈[T ]

(t + T exp(−t∆2))

≈ log(T∆2)

∆
.

See Bubeck, Perchet and Rigollet [2012] for the details.

For ∆ fixed the lower bound is log(T )
∆ , and for the worse ∆

(≈ 1/
√
T ) it is

√
T (Auer, Cesa-Bianchi, Freund and Schapire

[1995]:
√
Tn for the n-armed case).
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i.i.d. multi-armed bandit: fundamental limitations

Notation: ∆i = µ∗ − µi and Ni (t) is the number of pulls of arm i
up to time t. Then one has RT =

∑n
i=1 ∆iENi (T ).

For p, q ∈ [0, 1], kl(p, q) := p log
p

q
+ (1− p) log

1− p

1− q
.

Theorem (Lai and Robbins [1985])

Consider a strategy s.t. ∀a > 0, we have ENi (T ) = o(T a) if
∆i > 0. Then for any Bernoulli distributions,

lim inf
n→+∞

RT

log(T )
≥
∑

i :∆i>0

∆i

kl(µi , µ∗)
.

Note that 1
2∆i
≥ ∆i

kl(µi ,µ∗)
≥ µ∗(1−µ∗)

2∆i
so up to a variance-like term

the Lai and Robbins lower bound is
∑

i :∆i>0
log(T )

2∆i
.
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i.i.d. multi-armed bandit: fundamental strategy

Hoeffding’s inequality: w.p. ≥ 1− 1/T , ∀t ∈ [T ], i ∈ [n],

µi ≤
1

Ni (t)

∑
s<t:Is=i

Ys +

√
2 log(T )

Ni (t)
=: UCBi (t).

UCB (Upper Confidence Bound) strategy (Lai and Robbins [1985],
Agarwal [1995], Auer, Cesa-Bianchi and Fischer [2002]):

It ∈ argmax
i∈[n]

UCBi (t).

Simple analysis: on a 1− 2/T probability event one has

Ni (t) ≥ 8 log(T )/∆2
i ⇒ UCBi (t) < µ∗ ≤ UCBi∗(t),

so that ENi (T ) ≤ 2 + 8 log(T )/∆2
i and in fact

RT ≤ 2 +
∑

i :∆i>0

8 log(T )

∆i
.
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i.i.d. multi-armed bandit: going further
1. Optimal constant (replacing 8 by 1/2 in the UCB regret

bound) and Lai and Robbins variance-like term (replacing ∆i

by kl(µi , µ
∗)): see Cappé, Garivier, Maillard, Munos and

Stoltz [2013].

2. In many applications one is merely interested in finding the
best arm (instead of maximizing cumulative reward): this is
the best arm identification problem. For the fundamental
strategies see Even-Dar, Mannor and Mansour [2006] for the
fixed-confidence setting (see also Jamieson and Nowak [2014]
for a recent short survey) and Audibert, Bubeck and Munos
[2010] for the fixed budget setting. Key takeaway: one needs
of order H :=

∑
i ∆−2

i rounds to find the best arm.

3. The UCB analysis extends to sub-Gaussian reward
distributions. For heavy-tailed distributions, say with 1 + ε
moment for some ε ∈ (0, 1], one can get a regret that scales

with ∆
−1/ε
i (instead of ∆−1

i ) by using a robust mean
estimator, see Bubeck, Cesa-Bianchi and Lugosi [2012].
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∗)): see Cappé, Garivier, Maillard, Munos and

Stoltz [2013].

2. In many applications one is merely interested in finding the
best arm (instead of maximizing cumulative reward): this is
the best arm identification problem. For the fundamental
strategies see Even-Dar, Mannor and Mansour [2006] for the
fixed-confidence setting (see also Jamieson and Nowak [2014]
for a recent short survey) and Audibert, Bubeck and Munos
[2010] for the fixed budget setting. Key takeaway: one needs
of order H :=

∑
i ∆−2

i rounds to find the best arm.

3. The UCB analysis extends to sub-Gaussian reward
distributions. For heavy-tailed distributions, say with 1 + ε
moment for some ε ∈ (0, 1], one can get a regret that scales

with ∆
−1/ε
i (instead of ∆−1

i ) by using a robust mean
estimator, see Bubeck, Cesa-Bianchi and Lugosi [2012].



Adversarial multi-armed bandit, Auer, Cesa-Bianchi,
Freund and Schapire [1995, 2001]

For t = 1, . . . ,T , the player chooses It ∈ [n] based on previous
observations, and simultaneously an adversary chooses a loss
vector `t ∈ [0, 1]n. The player’s loss/observation is `t(It).

The regret and pseudo-regret are defined as:

RT = max
i∈[n]

∑
t∈[T ]

(`t(It)− `t(i)), RT = max
i∈[n]

E
∑
t∈[T ]

(`t(It)− `t(i)).

Obviously ERT ≥ RT and there is equality in the oblivious case (≡
adversary’s choice are independent of the player’s choice). The
case where `1, . . . , `T is an i.i.d. sequence corresponds to the i.i.d.
case we just studied. In particular we have a

√
Tn lower bound.
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Adversarial multi-armed bandit, fundamental strategy

Exponential weights strategy for full information (`t is observed at
the end of round t): play It at random from pt where

pt+1(i) =
1

Zt+1
pt(i) exp(−η`t(i)).

In five lines one can show RT ≤
√

2T log(n) with p1(i) = 1/n:

Ent(δj‖pt)− Ent(δj‖pt+1) = log
pt+1(j)

pt(j)
= log

1

Zt+1
− η`t(j)

ψt := logEI∼pt exp(−η(`t(I )− EI ′∼pt `t(I
′))) = ηE`t(I ′) + log(Zt+1)

η
∑
t

(∑
i

pt(i)`t(i)− `t(j)

)
= Ent(δj‖p1)− Ent(δj‖pT+1) +

∑
t

ψt

Using that `t ≥ 0 one has ψt ≤
η2

2
E`t(i)2 thus RT ≤

log(n)

η
+
ηT

2
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Adversarial multi-armed bandit, fundamental strategy

Exp3: replace `t by ˜̀t in the exponential weights strategy, where

˜̀
t(i) =

`t(It)

pt(i)
1{i = It}.

Key property: EIt∼pt
˜̀
t(i) = `t(i).

Thus with the analysis from the
previous slide:

RT ≤
log(n)

η
+
η

2
E
∑
t

EI∼pt
˜̀
t(I )

2.

Amazingly the variance term is automatically controlled:

EIt ,I∼pt
˜̀
t(I )

2 ≤ EIt ,I∼pt
1{I = It}
pt(It)2

= EI∼pt
1

pt(I )
= n.

Thus with η =
√

2n log(n)/T one gets RT ≤
√

2Tn log(n).
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Adversarial multi-armed bandit, going further

1. With the modified loss estimate `t(It)1{i=It}+β
pt(It)

one can prove
high probability bounds on RT , and by integrating the
deviations one can show ERT = O(

√
Tn log(n)).

2. The extraneous logarithmic factor in the pseudo-regret upper
can be removed, see Audibert and Bubeck [2009]. Conjecture:
one cannot remove the log factor for the expected regret, that
is for any strategy there exists an adaptive adversary such that
ERT = Ω(

√
Tn log(n)).

3. T can be replaced by various measure of “variance” in the
loss sequence, see e.g., Hazan and Kale [2009].

4. There exists strategies which guarantee simultaneously
RT = Õ(

√
Tn) in the adversarial model and

RT = Õ(
∑

i ∆−1
i ) in the i.i.d. model, see Bubeck and

Slivkins [2012].

5. Graph feedback structure, regret with respect to S switches,
label efficient, switching cost...
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Bayesian multi-armed bandit, Thompson [1933]

Set of models {(ν1(θ), . . . , νn(θ)), θ ∈ Θ} and prior distribution π0

over Θ. The Bayesian regret is defined as

BRT (π0) = Eθ∼π0RT (ν1(θ), . . . , νn(θ)).

In principle the strategy minimizing the Bayesian regret can be
computed by dynamic programming on the potentially huge state
space P(Θ). The celebrated Gittins index theorem gives sufficient
condition to dramatically reduce the computational complexity of
implementing the optimal Bayesian strategy under a strong
product assumption on π0.

Notation: πt denotes the posterior distribution on θ at time t.
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Bayesian multi-armed bandit, Gittins index

Theorem (Gittins [1979])

Consider the product and γ-discounted case: Θ = ×iΘi ,
νi (θ) := ν(θi ), π0 = ⊗iπ0(i), and furthermore one is interested in
maximizing E

∑
t≥0 γ

tYt .

The optimal Bayesian strategy is to pick
at time s the arm maximizing:

sup

{
λ ∈ R : sup

τ
E

(∑
t<τ

γtXt +
γτ

1− γ
λ

)
≥ 1

1− γ
λ

}
,

where the expectation is over (Xt) drawn from ν(θ) with
θ ∼ πs(i), and the supremum is taken over all stopping times τ .

For much more (implementation for exponential families,
interpretation as a multitoken Markov game, ...) see Dumitriu,
Tetali and Winkler [2003], Gittins, Glazebrook, Weber [2011],
Kaufmann [2014].



Bayesian multi-armed bandit, Gittins index

Theorem (Gittins [1979])

Consider the product and γ-discounted case: Θ = ×iΘi ,
νi (θ) := ν(θi ), π0 = ⊗iπ0(i), and furthermore one is interested in
maximizing E

∑
t≥0 γ

tYt . The optimal Bayesian strategy is to pick
at time s the arm maximizing:

sup

{
λ ∈ R : sup

τ
E

(∑
t<τ

γtXt +
γτ

1− γ
λ

)
≥ 1

1− γ
λ

}
,

where the expectation is over (Xt) drawn from ν(θ) with
θ ∼ πs(i), and the supremum is taken over all stopping times τ .

For much more (implementation for exponential families,
interpretation as a multitoken Markov game, ...) see Dumitriu,
Tetali and Winkler [2003], Gittins, Glazebrook, Weber [2011],
Kaufmann [2014].



Bayesian multi-armed bandit, Gittins index

Theorem (Gittins [1979])

Consider the product and γ-discounted case: Θ = ×iΘi ,
νi (θ) := ν(θi ), π0 = ⊗iπ0(i), and furthermore one is interested in
maximizing E

∑
t≥0 γ

tYt . The optimal Bayesian strategy is to pick
at time s the arm maximizing:

sup

{
λ ∈ R : sup

τ
E

(∑
t<τ

γtXt +
γτ

1− γ
λ

)
≥ 1

1− γ
λ

}
,

where the expectation is over (Xt) drawn from ν(θ) with
θ ∼ πs(i), and the supremum is taken over all stopping times τ .

For much more (implementation for exponential families,
interpretation as a multitoken Markov game, ...) see Dumitriu,
Tetali and Winkler [2003], Gittins, Glazebrook, Weber [2011],
Kaufmann [2014].



Bayesian multi-armed bandit, Gittins index
Weber [1992] gives an exquisite proof of Gittins theorem. Let

λt(i) := sup

{
λ ∈ R : sup

τ
E
∑
t<τ

γt(Xt − λ) ≥ 0

}
the Gittins index of arm i at time t, which we interpret as the
maximum charge one is willing to pay to play arm i given the
current information.

The prevailing charge is defined as
mins≤t λs(i) (i.e. whenever the prevailing charge is too high we
just drop it to the fair level).

1. Discounted sum of prevailing charge for played arms is an
upper bound (in expectation) on the discounted sum of
rewards.

2. Since the prevailing charge is nonincreasing, the discounted
sum of prevailing charge is maximized if we always pick the
arm with maximum prevailing charge.

3. Gittins index does exactly 2. and that in this case 1. is an
equality. Q.E.D.
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Bayesian multi-armed bandit, Thompson Sampling (TS)

In machine learning we want (i) strategies that can deal with
complicated priors, and (ii) guarantees for misspecified priors. This
is why we have to go beyond the Gittins index theory.

In his 1933 paper Thompson proposed the following strategy:
sample θ′ ∼ πt and play It ∈ argmaxµi (θ

′).

Theoretical guarantees for this highly practical strategy have long
remained elusive. Recently Agrawal and Goyal [2012] and
Kaufmann, Korda and Munos [2012] proved that TS with Bernoulli
reward distributions and uniform prior on the parameters achieves

RT = O
(∑

i
log(T )

∆i

)
(note that this is the frequentist regret!).

Guha and Munagala [2014] conjecture that, for product priors, TS
is a 2-approximation to the optimal Bayesian strategy for the
objective of minimizing the number of pulls on suboptimal arms.



Bayesian multi-armed bandit, Thompson Sampling (TS)

In machine learning we want (i) strategies that can deal with
complicated priors, and (ii) guarantees for misspecified priors. This
is why we have to go beyond the Gittins index theory.

In his 1933 paper Thompson proposed the following strategy:
sample θ′ ∼ πt and play It ∈ argmaxµi (θ

′).

Theoretical guarantees for this highly practical strategy have long
remained elusive. Recently Agrawal and Goyal [2012] and
Kaufmann, Korda and Munos [2012] proved that TS with Bernoulli
reward distributions and uniform prior on the parameters achieves

RT = O
(∑

i
log(T )

∆i

)
(note that this is the frequentist regret!).

Guha and Munagala [2014] conjecture that, for product priors, TS
is a 2-approximation to the optimal Bayesian strategy for the
objective of minimizing the number of pulls on suboptimal arms.



Bayesian multi-armed bandit, Thompson Sampling (TS)

In machine learning we want (i) strategies that can deal with
complicated priors, and (ii) guarantees for misspecified priors. This
is why we have to go beyond the Gittins index theory.

In his 1933 paper Thompson proposed the following strategy:
sample θ′ ∼ πt and play It ∈ argmaxµi (θ

′).

Theoretical guarantees for this highly practical strategy have long
remained elusive. Recently Agrawal and Goyal [2012] and
Kaufmann, Korda and Munos [2012] proved that TS with Bernoulli
reward distributions and uniform prior on the parameters achieves

RT = O
(∑

i
log(T )

∆i

)
(note that this is the frequentist regret!).

Guha and Munagala [2014] conjecture that, for product priors, TS
is a 2-approximation to the optimal Bayesian strategy for the
objective of minimizing the number of pulls on suboptimal arms.



Bayesian multi-armed bandit, Thompson Sampling (TS)

In machine learning we want (i) strategies that can deal with
complicated priors, and (ii) guarantees for misspecified priors. This
is why we have to go beyond the Gittins index theory.

In his 1933 paper Thompson proposed the following strategy:
sample θ′ ∼ πt and play It ∈ argmaxµi (θ

′).

Theoretical guarantees for this highly practical strategy have long
remained elusive. Recently Agrawal and Goyal [2012] and
Kaufmann, Korda and Munos [2012] proved that TS with Bernoulli
reward distributions and uniform prior on the parameters achieves

RT = O
(∑

i
log(T )

∆i

)
(note that this is the frequentist regret!).

Guha and Munagala [2014] conjecture that, for product priors, TS
is a 2-approximation to the optimal Bayesian strategy for the
objective of minimizing the number of pulls on suboptimal arms.



Bayesian multi-armed bandit, Russo and Van Roy [2014]
information ratio analysis

Assume a prior in the adversarial model, that is a prior over
(`1, . . . , `T ) ∈ [0, 1]n×T , and let Et denote the posterior
distribution (given `1(I1), . . . , `t−1(It−1)).

We introduce

rt(i) = Et(`t(i)− `t(i∗)), and vt(i) = Vart(Et(`t(i)|i∗)).

Key observation (next slide):

E
∑
t≤T

vt(It) ≤
1

2
H(x∗)

which implies:

∀t,Etrt(It) ≤
√

C Etvt(It)

⇒ E
T∑
t=1

rt(It) ≤
T∑
t=1

√
C Evt(It)

⇒ BRT ≤
√
C T H(i∗)/2.



Bayesian multi-armed bandit, Russo and Van Roy [2014]
information ratio analysis

Assume a prior in the adversarial model, that is a prior over
(`1, . . . , `T ) ∈ [0, 1]n×T , and let Et denote the posterior
distribution (given `1(I1), . . . , `t−1(It−1)). We introduce

rt(i) = Et(`t(i)− `t(i∗)), and vt(i) = Vart(Et(`t(i)|i∗)).

Key observation (next slide):

E
∑
t≤T

vt(It) ≤
1

2
H(x∗)

which implies:

∀t,Etrt(It) ≤
√

C Etvt(It)

⇒ E
T∑
t=1

rt(It) ≤
T∑
t=1

√
C Evt(It)

⇒ BRT ≤
√
C T H(i∗)/2.



Bayesian multi-armed bandit, Russo and Van Roy [2014]
information ratio analysis

Assume a prior in the adversarial model, that is a prior over
(`1, . . . , `T ) ∈ [0, 1]n×T , and let Et denote the posterior
distribution (given `1(I1), . . . , `t−1(It−1)). We introduce

rt(i) = Et(`t(i)− `t(i∗)), and vt(i) = Vart(Et(`t(i)|i∗)).

Key observation (next slide):

E
∑
t≤T

vt(It) ≤
1

2
H(x∗)

which implies:

∀t,Etrt(It) ≤
√

C Etvt(It)

⇒ E
T∑
t=1

rt(It) ≤
T∑
t=1

√
C Evt(It)

⇒ BRT ≤
√
C T H(i∗)/2.



Bayesian multi-armed bandit, Russo and Van Roy [2014]
information ratio analysis

Assume a prior in the adversarial model, that is a prior over
(`1, . . . , `T ) ∈ [0, 1]n×T , and let Et denote the posterior
distribution (given `1(I1), . . . , `t−1(It−1)). We introduce

rt(i) = Et(`t(i)− `t(i∗)), and vt(i) = Vart(Et(`t(i)|i∗)).

Key observation (next slide):

E
∑
t≤T

vt(It) ≤
1

2
H(x∗)

which implies:

∀t,Etrt(It) ≤
√

C Etvt(It)

⇒ E
T∑
t=1

rt(It) ≤
T∑
t=1

√
C Evt(It)

⇒ BRT ≤
√
C T H(i∗)/2.



Bayesian multi-armed bandit, accumulation of information

vt(i) = Vart(Et(`t(i)|i∗)), πt(j) = Pt(i
∗ = j), E

∑
t≤T

vt(It) ≤
1

2
H(x∗)

Equipped with Pinsker’s inequality and basic information theory
concepts (such as the mutual information I) one has:

vt(i) =
∑
j

πt(j)(Et(`t(i)|i∗ = j)− Et(`t(i)))2

≤ 1

2

∑
j

πt(j)Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i)))

=
1

2
It(`t(i), i

∗) = Ht(i
∗)− Ht(i

∗|`t(i)).

Thus Evt(It) ≤ 1
2E(Ht(i

∗)− Ht+1(i∗)).
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Bayesian multi-armed bandit, TS’ information ratio
Let ¯̀

t(i) = Et`t(i) and ¯̀
t(i , j) = Et(`t(i)|i∗ = j). Then

Etrt(It) ≤
√
C Etvt(It)

⇔ Et
¯̀
t(It)−

∑
i

πt(i)¯̀
t(i , i) ≤

√
C Et

∑
j

πt(j)(¯̀
t(It , j)− ¯̀

t(It))2

For TS the following shows that one can take C = n:

Et
¯̀
t(It)−

∑
i

πt(i)¯̀
t(i , i) =

∑
i

πt(i)(¯̀
t(i)− ¯̀

t(i , i))

≤
√
n
∑
i

πt(i)2(¯̀
t(i)− ¯̀

t(i , i))2

≤
√
n
∑
i ,j

πt(i)πt(j)(¯̀
t(i)− ¯̀

t(i , j))2.

Thus TS always satisfies BRT ≤
√
TnH(i∗) ≤

√
Tn log(n). Side

note: by the minimax theorem this implies there exists a strategy
for the oblivious adversarial model with regret

√
Tn log(n).
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Summary of basic results

1. In the i.i.d. model UCB attains a regret of O
(∑

i
log(T )

∆i

)
and

by Lai and Robbins’ lower bound this is optimal (up to a
multiplicative variance term).

2. In the adversarial model Exp3 attains a regret of
O(
√
Tn log(n)) and this is optimal up to the logarithmic term.

3. In the Bayesian model, Gittins index gives an optimal strategy
for the case of product priors. For general priors Thompson
Sampling is a more flexible strategy. Its Bayesian regret is
controlled by the entropy of the optimal decision. Moreover
TS with an uninformative prior has frequentist guarantees
comparable to UCB.


