
Neural machines with
nonstandard input structure



During the talk I will show work done by Sainbayar Sukhbaatar (on the
left) and Bolei Zhou (on the right); also with Antoine Bordes, Sumit
Chopra, Soumith Chintala, Rob Fergus, Gabriel Synnaeve, Jason Weston

All errors (and opinions) are of course mine....
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Some common neural architectures:

Good (neural) models exist for some data types:

Convolutional Networks (CNN) for translation-invariant (and scale
invariant/composable) grid-structured data

Recurrent Neural Networks (RNN) for (ordered) sequential data.

Less empirically successful:

fully connected feed-forward networks.
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(fully connected feed-forward) Neural Networks

Input is a fixed size vector, output is a fixed size vector.

Functions of the form

Fk ◦ Fk−1 ◦ ... ◦ F0,

each Fj is usually of the form

Fj(xj−1) = σ(Ajxj − bj),

where Aj is a matrix and bj is a vector

σ is an elementwise nonlinearity.

Aj , bj optimized for a given task, usually via (stochastic) gradient
descent.



(fully connected feed-forward) Neural Networks

“Given task” from the previous slide usually means a set of input
vectors xi and outputs yi .

And a loss function L(x , y , ŷ), where ŷ = F (x).

If y are categorical/discrete, the most standard (but certainly not the
only) procedure is to arrange a softmax at the last layer of network,
and use negative log likehood of the correct class as loss.

So if we have k-layer network, ŷ = Softmax(Fk(x)), and
L(x , y , ŷ) = −ŷ(y) , where

Softmax(z)i = ezi∑
j ezj

.
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(fully connected feed-forward) Neural Networks

(Deep) fully connected feed forward nets have not been nearly as
successful as their structured counterparts.

It’s not that they don’t work; but rather, you can almost always do
something better.
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Some opinions

Tension between wanting algorithms that figure out the correct
structure of a problem themselves, from data (“Solving AI”).

and solving problems with structure that gives human engineers
leverage.

Even though there is tension, these are not mutually exclusive.

for example, for convolutional nets, the structure of the network and
the end-to-end training are important.
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Convolutional neural networks:

The input xj has a grid structure, and Aj specializes to a convolution.

The pointwise nonlinearity is followed by a pooling operator.

Pooling introduces invariance (on the grid) at the cost of lower
resolution (on the grid).

These have been very successful because the invariances and
symmetries of the model are well adapted to the invariances and
symmetries of the tasks they are used for.



more opinions

Current optimization technology (for convnets) is primitive. Lots of
opportunities to develop optimization using the structure of the
network; don’t use general techniques!

e.g.: Batchnorm [Ioffe 2015], net2net [Chen 2015]

Same goes for mathematical analysis of deep learning. Don’t try to
find algorithms for getting to the true local minimum of generic fully
connected neural nets;

well, you can if you want to.

but instead maybe better to try to understand why we can do so well
on certain tasks with such primitive optimization; and how that can
transfer.
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Sequential networks

Inputs come as a sequence, and the output is a sequence:

input sequence x0, x1, ..., xn, ... and output sequence y0, y1, ..., yn, ...;

ŷi = f (xi , xi−1, ..., x0)

Two standard strategies for dealing with growing input:

fixed memory size (that is, f (xi , xi−1, ..., x0) = f (xi , xi−1, ..., xi−m) for
some fixed, not too big m )

recurrence
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Recurrent sequential networks (Elman, Jordan)
In equations:

Have input sequence x0, x1, ..., xn, ... and output sequence
y0, y1, ..., yn, ...;

and hidden state sequence h0, h1, ..., hn, ....

the network updates
hi+1 = f (hi , xi+1)

ŷi = g(hi ),
where f and g are (perhaps multilayer) neural networks.

multiplicative interactions seem to be important for recurrent
sequential networks (e.g. in LSTM, GRU).

Thus recurrent nets are as deep as the length of the sequence (if
written as a feed-forward network)



How to get array inputs?

Everything we have described up till now needs input arrays

in general, it is the practitioners duty to get arrays of floats from the
problem data.



Example 0: Lookup Table

Often used in language applications. Input is sequences of words
wi ∈W , where W is a finite set, |W | = N

e.g., W is the set of English words in a particular dictionary

Pick d , build N × d matrix A

the indexing operation φA(w) = Aw is called an embedding for w .

Equivalent to multiplying A against the sparse vector with a 1 in the
index of w and zeros elsewhere

the word embeddings are usually trained along with the model.



Example: recurrent language model:

Have input sequence w0,w1, ...,wn, ...;

using lookuptables A and B, get xn = φA(wn) and yn = φB(wn+1)

the network updates
hi+1 = f (hi , xi+1)

ŷi = g(hi ),

where f and g are (perhaps multilayer) feed-forward neural networks.

can use a softmax over outputs to get a probability distribution over ŷ



Recurrent sequential networks

State 

Encoder Embedding 

Decoder Embedding 

Sample 
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Encoder Embedding 

Decoder Embedding 
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State 

Encoder Embedding 

Decoder Embedding 
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Tradi&onal	  RNN	  
(recurrent	  in	  inputs)	  















What to do if your input is a set (of vectors)?

Wait, why do you want to input a set of vectors?



Why should we want to input sets?

permutation invariance

Sparse representations of input

Make determinations of structure at input time, rather than when
building architecture

No choice, the input is given that way, and we really want to use a
neural architecture.
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Examples where your input is a set (of vectors)

show games

a point cloud in 3-d

multi-modal data
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Simplest possibility: Bag of (vectors)

Given a featurization of each element of the input set into some Rd ,
take the mean:

{v1, ..., vs} →
1
s
∑

i
vi

Use domain knowledge to pick a good featurization, and perhaps to
arrange “pools” so that not all structural information from the set is
lost

This can be surprisingly effective

or, depending on your viewpoint, demonstrate bias in data or poorly
designed tasks.
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Sort out some terminology

using slightly nonstandard terminology:

“bag of x” often means “set of x”.

here we will say “set” to mean set and bag specifically to mean a sum
of a set of vectors of the same dimension

may slip and say “bag of words” which means sum of embeddings of
words.



Some empirical “successes” of bags

recommender systems (writing users as a bag of items, or items as
bags of users)

generic word embeddings (e.g. word2vec)

success as a generic baseline in language tasks (e.g. [Wieting et. al.
2016], [Weston et. al. 2014]); not always state of the art, but quite
often within 10% of state of the art.



Empirical “successes” of bags: VQA

Show Bolei’s demo

this is on the VQA data set of [Anton et. al. 2015]



Rd is surprisingly big...

Denote the d-sphere by Sd , and the d-ball by Bd

In this notation Sd−1 is the boundary of Bd .



Setting:

V ⊂ Sd , |V | = N, V i.i.d. uniform on sphere (this last thing is
somewhat unrealistic in learning settings).

E (|vT
i vj |) = 1/

√
d .

In fact, for fixed i , P(|vT
i vj | > a) ≤ (1− a2)d/2

This is called “concentration of measure”
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Recovery of words from bags of vectors:

Assumptions: N vectors V ⊂ Rd , V i.i.d. uniform on sphere.

Given

x =
( S∑

i=1
vsi

)
,

How big does d need to be so we can recover si by finding the nearest
vectors in V to x?

If for all vj with j 6= si , we have |vT
j vsi | < 1/S, we can do it, because

then |vT
j x | < 1 but vT

si
x ∼ 1.



Recovery of words from bags of vectors:

Assumptions: N vectors V ⊂ Rd , V i.i.d. uniform on sphere.

Given

x =
( S∑

i=1
vsi

)
,

How big does d need to be so we can recover si by finding the nearest
vectors in V to x?

If for all vj with j 6= si , we have |vT
j vsi | < 1/S, we can do it, because

then |vT
j x | < 1 but vT

si
x ∼ 1.



Recovery of words from bags of vectors:

Recall P(|vT
j vsi | > 1/S) ≤ (1− (1/S)2)d/2.

Denote the probability that some vj is too close to some vsi by ε, then

ε = 1− P(|vT
j vsi | < 1/S for all j 6= si and all si )

≤ 1−
(
1− (1− 1/S2)d/2

)NS

∼ 1− (1− NS(1− 1/S2)d/2) = NS(1− 1/S2)d/2

and
log ε = d log(1− 1/S2) log(NS)/2 ∼ −dS2 log(NS)/2

So rearranging, for failure probability ε, we need d > S2 log(NS/ε)
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Recovery of words from bags of vectors:

If we are a little more careful, using the fact that V i.i.d. and mean
zero means we only really needed |vT

j vsi | < 1/
√

S

So for failure probability ε, we need d > S log(NS/ε), and given a bag
of vectors, we can get the words back.

Huge literature on this kind of bound; statements are much more
general and refined (and actually proved). Google "sparse recovery".



Recovery of “words” from bags of vectors:

note that the more general forms of sparse recovery require iterative
algorithms for inference

and the iterative algorithms look just like the forward of a neural
network!

empirically, can use a not too deep NN to do the recovery; see [Gregor,
2010]



Failures of bags:

Convolutional nets and vision

bags do badly at plenty of nlp tasks (e.g. translation)
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Moral:

Don’t be afraid to try simple bags on your problem

Use bags as a baseline (and spend effort to engineer them well)

but bags cannot solve everything!

or even most things, really.
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Attention

“Attention”: weighting or probability distribution over inputs that
depends on computational state and inputs

Attention can be “hard”, that is, described by discrete variables, or
“soft”, described by continuous variables.



Attention in vision

Humans use attention at multiple scales (Saccades, etc...)

long history in computer vision [P.N. Rajesh et al., 1996; Butko et. al.,
2009; Larochelle et al., 2010; Mnih et. al. 2014;]

this is usually attention over the grid: given a machines current
state/history of glimpses, where and at what scale should it look next



Attention in nlp

Alignment in machine translation: for each word in the target, get a
distribution over words in the source [Brown et. al. 1993], (lots more)

Used differently than the vision version: optimized over, rather than
focused on.

Attention as “focusing” in nlp: [Bahdanau et. al. 2014].



Attention with bags
Attention with bags = dynamically weighted bags

{v1, ..., vs} →
∑

i
civi

where ci depends on the state of the machine and vi .

One standard approach (soft attention): state given by vector of
hidden variables h and

ci = ehT ci∑
j ehT cj

Another standard approach (hard attention): state given by vector of
hidden variables h and

ci = δφ(h,c),

where φ outputs an index
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Attention with bags

attention with bags is a “generic” computational mechanism; it allows
complex processing of any “unstructured” inputs.

:)

but really,

Helps solve problems with long term dependencies

deals cleanly with sparse inputs

allows practitioners to inject domain knowledge and structure at run
time instead of at architecting time.
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Attention with bags history

This seems to be a surprisingly new development

for handwriting generation: [Graves, 2013] location based

for translation: [Bahdanau et. al. 2014] content based

more generally: [Weston et. al. 2014; Graves et. al. 2014; Vinyals
2015] content + location



Comparison between hard and soft attention:

Hard attention is nice at test time, and allows indexing tricks.

But makes it difficult to do gradient based learning at train time.



Memory networks [Weston et. al. 2014]

The network keeps a hidden state; and operates by sequential updates
to the hidden state.

each update to the hidden state is modulated by attention over the
input set.

outputs a fixed size vector

memn2n [Sukhbaatar et. al. 2015] makes the architecture fully
backpropable
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Softmax 

Weighted Sum 
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Memory network operation, simplest version

Fix a number of “hops” p, initialize h = 0 ∈ Rd , i = 0,

input M = {m1, ...,mk}, mi ∈ Rd

The memory network then operates with

1: increment i ← i + 1

2: set a = σ(hT M) (σ is the vector softmax function)

3: update h←
∑

j ajmj

4: if i < p return to 1:, else output h.
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addressing 
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 (unordered) 
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vector 
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Memory network operation, more realistic version
require φA that takes an input mi and outputs a vector φA(mi ) ∈ Rd

require φB that takes an input mi and outputs a vector φB(mi ) ∈ Rd

Fix a number of “hops” p, initialize h = 0 ∈ Rd , i = 0,

Set MA = [φA(m1), ..., φA(mk)], and MB = [φB(m1), ..., φB(mk)]

1: increment i ← i + 1

2: set a = σ(hT MA)

3: update h← aT MB =
∑

j ajφB(mj)

4: if i < p return to 1:, else output h.



With great flexibility comes great responsibility (to
featurize)

The φ convert input data into vectors.

no free lunch- the framework allows you to operate on unstructured sets
of vectors, but as a user, you still have to decide how to featurize each
element in your input sets to Rd and what things to put in memory.

This usually requires you to have some domain knowledge; but in
return, framework is very flexible.

you are allowed to parameterize the features and push gradients back
through them.



Example: bag of words

Each m = {m1, ...,ms} is a set of discrete symbols taken from a setM
of cardinality c

Build c × d matrices A and B,

can take

φA(m) = 1
s

s∑
i=1

Ami

Used for NLP tasks where one suspects the order within each m is
irrelevant



Content vs location based addressing

If the inputs have an underlying geometry, can include geometric
information in the bags

e.g take m = {c1, ..., cs , g1, ..., gt}

ci are content words, describing what is happening in that m, gi
describe where that m is.



show game again



Example: convnet + attention over text

Input is an image and a question about the image

Use output of convolutional network for image features; each image m
is the sum of network output at a given location and embedded
location word.

lookup table for question words

This particular example doesn’t work yet (not any better than bag of
words on standard VQA datasets)



(sequential) Recurrent networks for language modeling
(again)

At train time:

Have input sequence x0, x1, ..., xn, ... and output sequence
y0 = x1, y1 = x2, ...;

and state sequence h0, h1, ..., hn, ....

the network runs via

hi+1 = σ(Whi + Uxi+1)

ŷi = Vg(hi ),

σ is a nonlinearity, W ,U,V are matrices of appropriate size



(sequential) Recurrent networks for language modeling
(again)

At generation time:

Have seed hidden state h0, perhaps given by running on a seed
sequence;

Output
sample xi+1 ∼ σ(Vg(hi )),

hi+1 = σ(Whi + Uxi+1)
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(Combinatorial) Graph:

a set of vertices V and edges E : V × V → {0, 1}

for simplicty, we are using binary edges, but everything works with
weighted graphs

Given a graph with vertices V , a function from V → Rd is just a set of
vectors in Rd indexed by V .



Graph Neural Network

GNN [Scarselli et. al., 2009] [Li et. al., 2015] does parallel processing
of a set or graph as opposed to sequential processing as above.

note: this is a slightly different presentation

Given a function h0 : V → Rd0 , set

hi+1
j = f i (hi

j , c i
j ) (1)

c i+1
j = 1

N(j)
∑

j′∈N(j)

hi+1
j′ . (2)

can build recurrent version as well...



Simple special case: Stream processor for sets

Given a set of m vectors {h0
1, ..., h0

m}

pick matrices H i and C i ; set

hi+1
j = f i (hi

j , c i
j ) = σ(H ihi

j + C ic i
j )

and
c i+1

j = 1
m − 1

∑
j′ 6=j

hi+1
j′

and set C̄ i = C i/(m − 1)



Simple special case: Stream processor for sets

Then we have a plain multilayer neural network with transition matrices

T i =


H i C̄ i C̄ i ... C̄ i

C̄ i H i C̄ i ... C̄ i

C̄ i C̄ i H i ... C̄ i

...
...

...
. . .

...
C̄ i C̄ i C̄ i ... H i

 ,

that is hi+1 = σ(T ihi ).

mild abuse of notation, above hi is the concatenation of all the
{hi

1, ..., hi
m}
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Simple special case: Stream processor for sets

Note that this dynamically resizes on input,

and C̄ i = C i/(m − 1).

and is permutation invariant.

The key here is that modules are connected by type, not by index.
Here the types are “myself” or “not myself”
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Simple special case: Stream processor for sets

Note that this dynamically resizes on input,

and C̄ i = C i/(m − 1).

and is permutation invariant.

The key here is that modules are connected by type, not by index.
Here the types are “myself” or “not myself”



Example:

Show Sainaa’s video



Graph Neural Network and sparse recovery

recall generic updates

hi+1
j = f i (hi

j , c i
j ) (3)

c i+1
j = 1

N(j)
∑

j′∈N(j)

hi+1
j′ . (4)

The vertices communicate with each other through bags (of hidden
states)



Unsupervised learning is important!

We don’t have the resources to label all the things even for a few
important tasks

Never mind the long tail of tasks we would like to be able to do but are
not common or important enough individually to merit a human’s or a
teams’ time.



Unsupervised learning is hard!

the details your unsupervised learner thinks are important may be
useless for the task you care about

or worse... the details your unsupervised learner thinks are useless are
important for the task you care about.



Answer: Weak labels?

Weak labels are awesome and you should use them.

but still not sufficient, I think. Too many tasks are in the tail, and
require novel arrangements of skills.

From Leon Bottou: “Engineering AI problem after AI problem fails
because it never ends”

From Richard Sutton: “The history of AI is marked by increasing
automation. First people hand designed systems to answer hand
designed questions. Now they use lots of data to train statistical
systems to answer hand designed questions. The next step is to
automate asking the questions.”



Answer: self-directed learning

Assumption: there exist many situations where a useful subtask S for a
given task T can be specified with less parameters than the solution to
T

Under this assumption, the algorithm uses the supervision from T to
choose/design S, and unlabeled data (from the perspective of T ) is
used to train the solution to S.

Important: the supervision from S is independent from T once S is in
place- S continues to give supervision even in the absence of
supervision from T (in contrast to e.g. backprop).

In this way the problem of “what features in the data are important?”
that plagues unsupervised learning is avoided.



Self-directed learning

Notice the wicked multiscale that is about to be unleashed....

Also notice this is an approach for planning: given a test time task, it
would be great to be able to break it down into salient subtasks.



Task!

need tasks that align practitioners desire to use every trick they can to
get a better score

but force us to make progress

clear metrics for success, clear failures from current methods, but not
impossibly far away.

how to get past counting with synonyms



Thanks!
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