
Deep Reinforcement Learning

John Schulman

1

MLSS, May 2016, Cadiz

1Berkeley Artificial Intelligence Research Lab

Agenda

Introduction and Overview

Markov Decision Processes

Reinforcement Learning via Black-Box Optimization

Policy Gradient Methods

Variance Reduction for Policy Gradients

Trust Region and Natural Gradient Methods

Open Problems

Course materials: goo.gl/5wsgbJ

goo.gl/5wsgbJ

Introduction and Overview

What is Reinforcement Learning?

I Branch of machine learning concerned with taking
sequences of actions

I Usually described in terms of agent interacting with a
previously unknown environment, trying to maximize
cumulative reward

Agent Environment

action

observation, reward

Motor Control and Robotics

Robotics:

I Observations: camera images, joint angles

I Actions: joint torques

I Rewards: stay balanced, navigate to target locations,
serve and protect humans

Business Operations

I Inventory Management
I Observations: current inventory levels
I Actions: number of units of each item to purchase
I Rewards: profit

I Resource allocation: who to provide customer service to
first

I Routing problems: in management of shipping fleet,
which trucks / truckers to assign to which cargo

Games

A different kind of optimization problem (min-max) but still
considered to be RL.

I Go (complete information, deterministic) – AlphaGo2

I Backgammon (complete information, stochastic) –
TD-Gammon3

I Stratego (incomplete information, deterministic)

I Poker (incomplete information, stochastic)

2David Silver, Aja Huang, et al. “Mastering the game of Go with deep neural networks and tree search”. In:
Nature 529.7587 (2016), pp. 484–489.

3Gerald Tesauro. “Temporal difference learning and TD-Gammon”. In: Communications of the ACM 38.3
(1995), pp. 58–68.

Approaches to RL

Policy Optimization Dynamic Programming

DFO / Evolution Policy Gradients Policy Iteration Value Iteration

Actor-Critic
Methods

modified
policy iteration

Q-Learning

What is Deep RL?

I RL using nonlinear function approximators

I Usually, updating parameters with stochastic gradient
descent

What’s Deep RL?

Whatever the front half of the cerebral cortex does (motor and
executive cortices)

Markov Decision Processes

Definition

I Markov Decision Process (MDP) defined by (S,A,P),
where

I S: state space
I A: action space
I P(r , s ′ | s, a): a transition probability distribution

I Extra objects defined depending on problem setting
I µ: Initial state distribution
I γ: discount factor

Episodic Setting

I In each episode, the initial state is sampled from µ, and
the process proceeds until the terminal state is reached.
For example:

I Taxi robot reaches its destination (termination = good)
I Waiter robot finishes a shift (fixed time)
I Walking robot falls over (termination = bad)

I Goal: maximize expected reward per episode

Policies

I Deterministic policies: a = π(s)

I Stochastic policies: a ∼ π(a | s)

I Parameterized policies: πθ

Episodic Setting

s0 ∼ µ(s0)

a0 ∼ π(a0 | s0)

s1, r0 ∼ P(s1, r0 | s0, a0)

a1 ∼ π(a1 | s1)

s2, r1 ∼ P(s2, r1 | s1, a1)

. . .

aT−1 ∼ π(aT−1 | sT−1)

sT , rT−1 ∼ P(sT | sT−1, aT−1)

Objective:

maximize η(π), where

η(π) = E [r0 + r1 + · · ·+ rT−1 | π]

Episodic Setting

μ0

a0

s0 s1

a1 aT-1

sT

π

P

Agent

r0 r1 rT-1

Environment

s2

Objective:

maximize η(π), where

η(π) = E [r0 + r1 + · · ·+ rT−1 | π]

Parameterized Policies

I A family of policies indexed by parameter vector θ ∈ Rd

I Deterministic: a = π(s, θ)
I Stochastic: π(a | s, θ)

I Analogous to classification or regression with input s,
output a. E.g. for neural network stochastic policies:

I Discrete action space: network outputs vector of
probabilities

I Continuous action space: network outputs mean and
diagonal covariance of Gaussian

Reinforcement Learning via Black-Box

Optimization

Derivative Free Optimization Approach

I Objective:

maximizeE [R | π(·, θ)]

I View θ → �→ R as a black box

I Ignore all other information other than R collected during
episode

Cross-Entropy Method

I Evolutionary algorithm

I Works embarrassingly well

István Szita and András Lörincz. “Learning
Tetris using the noisy cross-entropy method”.
In: Neural computation 18.12 (2006),

pp. 2936–2941

Victor Gabillon, Mohammad Ghavamzadeh,
and Bruno Scherrer. “Approximate Dynamic
Programming Finally Performs Well in the
Game of Tetris”. In: Advances in Neural
Information Processing Systems. 2013

Cross-Entropy Method

I Evolutionary algorithm

I Works embarrassingly well

I A similar algorithm, Covariance Matrix Adaptation, has
become standard in graphics:

Cross-Entropy Method

Initialize µ ∈ Rd , σ ∈ Rd

for iteration = 1, 2, . . . do
Collect n samples of θi ∼ N(µ, diag(σ))
Perform a noisy evaluation Ri ∼ θi
Select the top p% of samples (e.g. p = 20), which we’ll

call the elite set
Fit a Gaussian distribution, with diagonal covariance,

to the elite set, obtaining a new µ, σ.
end for
Return the final µ.

Cross-Entropy Method

I Analysis: a very similar algorithm is an
minorization-maximization (MM) algorithm, guaranteed
to monotonically increase expected reward

I Recall that Monte-Carlo EM algorithm collects samples,
reweights them, and them maximizes their logprob

I We can derive MM algorithm where each iteration you
maximize

∑
i log p(θi)Ri

Policy Gradient Methods

Policy Gradient Methods: Overview

Problem:

maximizeE [R | πθ]

Intuitions: collect a bunch of trajectories, and ...

1. Make the good trajectories more probable

2. Make the good actions more probable (actor-critic, GAE)

3. Push the actions towards good actions (DPG, SVG)

Score Function Gradient Estimator
I Consider an expectation Ex∼p(x | θ)[f (x)]. Want to compute

gradient wrt θ

∇θEx [f (x)] = ∇θ
∫
dx p(x | θ)f (x)

=

∫
dx ∇θp(x | θ)f (x)

=

∫
dx p(x | θ)

∇θp(x | θ)

p(x | θ)
f (x)

=

∫
dx p(x | θ)∇θ log p(x | θ)f (x)

= Ex [f (x)∇θ log p(x | θ)].

I Last expression gives us an unbiased gradient estimator. Just
sample xi ∼ p(x | θ), and compute ĝi = f (xi)∇θ log p(xi | θ).

I Need to be able to compute and differentiate density p(x | θ)
wrt θ

Derivation via Importance Sampling

Alternate Derivation Using Importance Sampling

Ex∼θ [f (x)] = Ex∼θold

[
p(x | θ)

p(x | θold)
f (x)

]
∇θEx∼θ [f (x)] = Ex∼θold

[
∇θp(x | θ)

p(x | θold)
f (x)

]
∇θEx∼θ [f (x)]

∣∣
θ=θold

= Ex∼θold

[
∇θp(x | θ)

∣∣
θ=θold

p(x | θold)
f (x)

]
= Ex∼θold

[
∇θ log p(x | θ)

∣∣
θ=θold

f (x)
]

Score Function Gradient Estimator: Intuition

ĝi = f (xi)∇θ log p(xi | θ)

I Let’s say that f (x) measures how good the
sample x is.

I Moving in the direction ĝi pushes up the
logprob of the sample, in proportion to how
good it is

I Valid even if f (x) is discontinuous, and
unknown, or sample space (containing x) is a
discrete set

Score Function Gradient Estimator: Intuition

ĝi = f (xi)∇θ log p(xi | θ)

Score Function Gradient Estimator: Intuition

ĝi = f (xi)∇θ log p(xi | θ)

Score Function Gradient Estimator for Policies
I Now random variable x is a whole trajectory
τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT)

∇θEτ [R(τ)] = Eτ [∇θ log p(τ | θ)R(τ)]

I Just need to write out p(τ | θ):

p(τ | θ) = µ(s0)
T−1∏
t=0

[π(at | st , θ)P(st+1, rt | st , at)]

log p(τ | θ) = log µ(s0) +
T−1∑
t=0

[log π(at | st , θ) + logP(st+1, rt | st , at)]

∇θ log p(τ | θ) = ∇θ

T−1∑
t=0

log π(at | st , θ)

∇θEτ [R] = Eτ

[
R∇θ

T−1∑
t=0

log π(at | st , θ)

]
I Interpretation: using good trajectories (high R) as supervised

examples in classification / regression

Policy Gradient–Slightly Better Formula
I Previous slide:

∇θEτ [R] = Eτ

[(
T−1∑
t=0

rt

)(
T−1∑
t=0

∇θ log π(at | st , θ)

)]
I But we can cut trajectory to t steps and derive gradient

estimator for one reward term rt′ .

∇θE [rt′] = E

[
rt′

t∑
t=0

∇θ log π(at | st , θ)

]
I Sum this formula over t, obtaining

∇θE [R] = E

[
T−1∑
t=0

rt′
t′∑

t=0

∇θ log π(at | st , θ)

]

= E

[
T−1∑
t=0

∇θ log π(at | st , θ)
T−1∑
t′=t

rt′

]

Adding a Baseline

I Suppose f (x) ≥ 0, ∀x
I Then for every xi , gradient estimator ĝi tries to push up

it’s density

I We can derive a new unbiased estimator that avoids this
problem, and only pushes up the density for
better-than-average xi .

∇θEx [f (x)] = ∇θEx [f (x)− b]

= Ex [∇θ log p(x | θ)(f (x)− b)]

I A near-optimal choice of b is always E [f (x)]
(which must be estimated)

Policy Gradient with Baseline
I Recall

∇θEτ [R] =
T−1∑
t′=0

rt′
T−1∑
t=t

∇θ log π(at | st , θ)

I Using the Eat [∇θ log π(at | st , θ)] = 0, we can show

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t=t′

rt′ − b(st)

)]
for any “baseline” function b : S → R

I Increase logprob of action at proportionally to how much
returns

∑T−1
t=t′ rt′ are better than expected

I Later: use value functions to further isolate effect of
action, at the cost of bias

I For more general picture of score function gradient
estimator, see stochastic computation graphs4.

4John Schulman, Nicolas Heess, et al. “Gradient Estimation Using Stochastic Computation Graphs”. In:
Advances in Neural Information Processing Systems. 2015, pp. 3510–3522.

That’s all for today

Course Materials: goo.gl/5wsgbJ

goo.gl/5wsgbJ

Variance Reduction for Policy Gradients

Review (I)
I Process for generating trajectory
τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT)

s0 ∼ µ(s0)

a0 ∼ π(a0 | s0)

s1, r0 ∼ P(s1, r0 | s0, a0)

a1 ∼ π(a1 | s1)

s2, r1 ∼ P(s2, r1 | s1, a1)

. . .

aT−1 ∼ π(aT−1 | sT−1)

sT , rT−1 ∼ P(sT | sT−1, aT−1)

I Given parameterized policy π(a | s, θ), the optimization
problem is

maximize
θ

Eτ [R | π(· | ·, θ)]

where R = r0 + r1 + · · ·+ rT−1.

Review (II)

I In general, we can compute gradients of expectations
with the score function gradient estimator

∇θEx∼p(x | θ) [f (x)] = Ex [∇θ log p(x | θ)f (x)]

I We derived a formula for the policy gradient

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t=t′

rt′ − b(st)

)]

Value Functions

I The state-value function V π is defined as:

V π(s) = E [r0 + r1 + r2 + . . . | s0 = s]

Measures expected future return, starting with state s

I The state-action value function Qπ is defined as

Qπ(s, a) = E [r0 + r1 + r2 + . . . | s0 = s, a0 = a]

I The advantage function Aπ is

Aπ(s, a) = Qπ(s, a)− V π(s)

Measures how much better is action a than what the
policy π would’ve done.

Refining the Policy Gradient Formula
I Recall

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)

(
T−1∑
t=t′

rt′ − b(st)

)]

=
T−1∑
t=0

Eτ

[
∇θ log π(at | st , θ)

(
T−1∑
t=t′

rt′ − b(st)

)]

=
T−1∑
t=0

Es0...at

[
∇θ log π(at | st , θ)Ertst+1...sT

[(
T−1∑
t=t′

rt′ − b(st)

)]]

=
T−1∑
t=0

Es0...at

[
∇θ log π(at | st , θ)Ertst+1...sT [Qπ(st , at)− b(st)]

]
I Where the last equality used the fact that

Ertst+1...sT

[
T−1∑
t=t′

rt′

]
= Qπ(st , at)

Refining the Policy Gradient Formula

I From the previous slide, we’ve obtained

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)(Qπ(st , at)− b(st))

]

I Now let’s define b(s) = V π(s), which turns out to be
near-optimal5. We get

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)Aπ(st , at)

]
I Intuition: increase the probability of good actions

(positive advantage) decrease the probability of bad ones
(negative advantage)

5Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. “Variance reduction techniques for gradient
estimates in reinforcement learning”. In: The Journal of Machine Learning Research 5 (2004), pp. 1471–1530.

Variance Reduction

I Now, we have the following policy gradient formula:

∇θEτ [R] = Eτ

[
T−1∑
t=0

∇θ log π(at | st , θ)Aπ(st , at)

]
I Aπ is not known, but we can plug in a random variable

Ât , an advantage estimator

I Previously, we showed that taking

Ât = rt + rt+1 + rt+2 + · · · − b(st)

for any function b(st), gives an unbiased policy gradient
estimator. b(st) ≈ V π(st) gives variance reduction.

The Delayed Reward Problem

I One reason RL is difficult is the long delay between action
and reward

I

The Delayed Reward Problem

I With policy gradient methods, we are confounding the
effect of multiple actions:

Ât = rt + rt+1 + rt+2 + · · · − b(st)

mixes effect of at , at+1, at+2, . . .

I SNR of Ât scales roughly as 1/T
I Only at contributes to signal Aπ(st , at), but

at+1, at+2, . . . contribute to noise.

Var. Red. Idea 1: Using Discounts
I Discount factor γ, 0 < γ < 1, downweights the effect of

rewars that are far in the future—ignore long term
dependencies

I We can form an advantage estimator using the
discounted return:

Âγt = rt + γrt+1 + γ2rt+2 + . . .︸ ︷︷ ︸
discounted return

−b(st)

reduces to our previous estimator when γ = 1.

I So advantage has expectation zero, we should fit baseline
to be discounted value function

V π,γ(s) = Eτ
[
r0 + γr1 + γ2r2 + . . . | s0 = s

]
I Âγt is a biased estimator of the advantage function

Var. Red. Idea 2: Value Functions in the Future
I Another approach for variance reduction is to use the

value function to estimate future rewards

rt + rt+1 + rt+2 + . . . use empirical rewards

⇒
rt + V (st+1) cut off at one timestep

rt + rt+1 + V (st+2) cut off at two timesteps

. . .

Adding the baseline again, we get the advantage
estimators

Ât = rt + V (st+1)− V (st) cut off at one timestep

Ât = rt + rt+1 + V (st+2)− V (st) cut off at two timesteps

. . .

Combining Ideas 1 and 2
I Can combine discounts and value functions in the future, e.g.,

Ât = rt + γV (st+1)− V (st), where V approximates
discounted value function V π,γ .

I The above formula is called an actor-critic method, where
actor is the policy π, and critic is the value function V .6

I Going further, the generalized advantage estimator 7

Âγ,λt =δt + (γλ)δt+1 + (γλ)2δt+2 + . . .

where δt = rt + γV (st+1)− V (st)

I Interpolates between two previous estimators:

λ = 0 : rt + γV (st+1)− V (st) (low v, high b)

λ = 1 : rt + γrt+1 + γ2rt+2 + · · · − V (st) (low b, high v)

6Vijay R Konda and John N Tsitsiklis. “Actor-Critic Algorithms.” In: Advances in Neural Information
Processing Systems. Vol. 13. Citeseer. 1999, pp. 1008–1014.

7John Schulman, Philipp Moritz, et al. “High-dimensional continuous control using generalized advantage
estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

Alternative Approach: Reparameterization

I Suppose problem has continuous action space, a ∈ Rd

I Then d
da
Qπ(s, a) tells use how to improve our action

I We can use reparameterization trick, so a is a
deterministic function a = f (s, z), where z is noise. Then,

∇θEτ [R] = ∇θQ
π(s0, a0) +∇θQ

π(s1, a1) + . . .

I This method is called the deterministic policy gradient8

I A generalized version, which also uses a dynamics model,
is described as the stochastic value gradient9

8David Silver, Guy Lever, et al. “Deterministic policy gradient algorithms”. In: ICML. 2014;
Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv preprint
arXiv:1509.02971 (2015).

9Nicolas Heess et al. “Learning continuous control policies by stochastic value gradients”. In: Advances in
Neural Information Processing Systems. 2015, pp. 2926–2934.

Trust Region and Natural Gradient

Methods

Optimization Issues with Policy Gradients

I Hard to choose reasonable stepsize that works for the
whole optimization

I we have a gradient estimate, no objective for line search
I statistics of data (observations and rewards) change

during learning

I They make inefficient use of data: each experience is only
used to compute one gradient.

I Given a batch of trajectories, what’s the most we can do
with it?

Policy Performance Function

I Let η(π) denote the performance of policy π

η(π) = Eτ [R|π]

I The following neat identity holds:

η(π̃) = η(π) + Eτ∼π̃ [Aπ(s0, a0) + Aπ(s1, a1) + Aπ(s2, a2) + . . .]

I Proof: consider nonstationary policy π0π1π2, . . .

η(π̃π̃π̃ · · ·) = η(πππ · · ·)
+ η(π̃ππ · · ·)− η(πππ · · ·)
+ η(π̃π̃π · · ·)− η(π̃ππ · · ·)
+ η(π̃π̃π̃ · · ·)− η(π̃π̃π · · ·)
+ . . .

I tth difference term equals Aπ(st , at)

Local Approximation
I We just derived an expression for the performance of a policy π̃

relative to π

η(π̃) = η(π) + Eτ∼π̃ [Aπ(s0, a0) + Aπ(s1, a1) + . . .]

= η(π) + Es0:∞∼π̃ [Ea0:∞∼π̃ [Aπ(s0, a0) + Aπ(s1, a1) + . . .]]

I Can’t use this to optimize π̃ because state distribution has
complicated dependence.

I Let’s define Lπ the local approximation, which ignores change in
state distribution—can be estimated by sampling from π

Lπ(π̃) = Es0:∞∼π [Ea0:∞∼π̃ [Aπ(s0, a0) + Aπ(s1, a1) + . . .]]

= Es0:∞

[
T−1∑
t=0

Ea∼π̃ [Aπ(st , at)]

]

= Es0:∞

[
T−1∑
t=0

Ea∼π

[
π̃(at | st)
π(at | st)

Aπ(st , at)

]]

= Eτ∼π

[
T−1∑
t=0

π̃(at | st)
π(at | st)

Aπ(st , at)

]

Local Approximation
I Now let’s consider parameterized policy, π(a | s, θ). Sample with
θold, now write local approximation in terms of θ.

Lπ(π̃) = Es0:∞

[
T−1∑
t=0

Ea∼π

[
π̃(at | st)
π(at | st)

Aπ(st , at)

]]

⇒ Lθold(θ) = Es0:∞

[
T−1∑
t=0

Ea∼θ

[
π(at | st , θ)

π(at | st , θold)
Aθ(st , at)

]]

I Lθold(θ) matches η(θ) to first order around θold.

∇θLθold(θ)
∣∣
θ=θ0

= Es0:∞

[
T−1∑
t=0

Ea∼θ

[
∇θπ(at | st , θ)

π(at | st , θold)
Aθ(st , at)

]]

= Es0:∞

[
T−1∑
t=0

Ea∼θ

[
∇θ log π(at | st , θ)Aθ(st , at)

]]
= ∇θη(θ)

∣∣
θ=θold

MM Algorithm
I Theorem (ignoring some details)10

η(θ) ≥ Lθold(θ)︸ ︷︷ ︸
local approx. to η

−C max
s

DKL [π(· | θold, s) ‖ π(· | θ, s)]︸ ︷︷ ︸
penalty for changing policy

I
L(θ)+C·KL L(θ)η(θ)

θ

I If θold → θnew improves lower bound, it’s guaranteed to
improve η

10John Schulman, Sergey Levine, et al. “Trust Region Policy Optimization”. In: arXiv preprint
arXiv:1502.05477 (2015).

Review

I Want to optimize η(θ). Collected data with policy
parameter θold, now want to do update

I Derived local approximation Lθold(θ)

I Optimizing KL penalized local approximation givesn
guaranteed improvement to η

I More approximations gives practical algorithm, called
TRPO

TRPO—Approximations

I Steps:
I Instead of max over state space, take mean
I Linear approximation to L, quadratic approximation to

KL divergence
I Use hard constraint on KL divergence instead of penalty

I Solve the following problem approximately

maximize Lθold(θ)

subject to DKL[θold ‖ θ] ≤ δ

I Solve approximately through line search in the natural
gradient direction s = F−1g

I Resulting algorithm is a refined version of natural policy
gradient11

11Sham Kakade. “A Natural Policy Gradient.” In: NIPS. vol. 14. 2001, pp. 1531–1538.

Empirical Results: TRPO + GAE
I TRPO, with neural network policies, was applied to learn

controllers for 2D robotic swimming, hopping, and
walking, and playing Atari games12

Friday, June 6, 14

I Used TRPO along with generalized advantage estimation
to optimize locomotion policies for 3D simulated robots13

12John Schulman, Sergey Levine, et al. “Trust Region Policy Optimization”. In: arXiv preprint
arXiv:1502.05477 (2015).

13John Schulman, Philipp Moritz, et al. “High-dimensional continuous control using generalized advantage
estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

Putting In Perspective
Quick and incomplete overview of recent results with deep RL
algorithms
I Policy gradient methods

I TRPO + GAE
I Standard policy gradient (no trust region) + deep nets

+ parallel implementation14

I Repar trick15

I Q-learning16 and modifications17

I Combining search + supervised learning18

14V. Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1312.5602 (2013).

15Nicolas Heess et al. “Learning continuous control policies by stochastic value gradients”. In: Advances in
Neural Information Processing Systems. 2015, pp. 2926–2934; Timothy P Lillicrap et al. “Continuous control with
deep reinforcement learning”. In: arXiv preprint arXiv:1509.02971 (2015).

16V. Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1312.5602 (2013).

17Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Network Architectures for Deep Reinforcement
Learning”. In: arXiv preprint arXiv:1511.06581 (2015); Hado V Hasselt. “Double Q-learning”. In: Advances in
Neural Information Processing Systems. 2010, pp. 2613–2621.

18X. Guo et al. “Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning”. In:
Advances in Neural Information Processing Systems. 2014, pp. 3338–3346; Sergey Levine et al. “End-to-end
training of deep visuomotor policies”. In: arXiv preprint arXiv:1504.00702 (2015); Igor Mordatch et al.
“Interactive Control of Diverse Complex Characters with Neural Networks”. In: Advances in Neural Information
Processing Systems. 2015, pp. 3114–3122.

Open Problems

What’s the Right Core Model-Free Algorithm?

I Policy gradients (score function vs. reparameterization,
natural vs. not natural) vs. Q-learning vs. derivative-free
optimization vs others

I Desiderata
I scalable
I sample-efficient
I robust
I learns from off-policy data

Exploration

I Exploration: actively encourage agent to reach unfamiliar
parts of state space, avoid getting stuck in local
maximum of performance

I Can solve finite MDPs in polynomial time with
exploration19

I optimism about new states and actions
I maintain distribution over possible models, and plan

with them (Bayesian RL, Thompson sampling)

I How to do exploration in deep RL setting? Thompson
sampling20, novelty bonus21

19Alexander L Strehl et al. “PAC model-free reinforcement learning”. In: Proceedings of the 23rd international
conference on Machine learning. ACM. 2006, pp. 881–888.

20Ian Osband et al. “Deep Exploration via Bootstrapped DQN”. . In: arXiv preprint arXiv:1602.04621 (2016).

21Bradly C Stadie, Sergey Levine, and Pieter Abbeel. “Incentivizing Exploration In Reinforcement Learning With
Deep Predictive Models”. In: arXiv preprint arXiv:1507.00814 (2015).

Hierarchy

torque control: 100hz: 107 timesteps /day

task 1 … task 2 … task 3 … task 4 … 10 timesteps / day

footstep planning: 1hz: 105 timesteps / day

walk to x … fetch object y … say z … .01 hz: 103 time steps per day

More Open Problems

I Using learned models

I Learning from demonstrations

The End

Questions?

	Introduction and Overview
	Markov Decision Processes
	Reinforcement Learning via Black-Box Optimization
	Policy Gradient Methods
	Variance Reduction for Policy Gradients
	Trust Region and Natural Gradient Methods
	Open Problems

