Deep Reinforcement Learning

John Schulman

OpenAl Berkeley₁

MLSS, May 2016, Cadiz

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

¹Berkeley Artificial Intelligence Research Lab

Agenda

Introduction and Overview

Markov Decision Processes

Reinforcement Learning via Black-Box Optimization

Policy Gradient Methods

Variance Reduction for Policy Gradients

Trust Region and Natural Gradient Methods

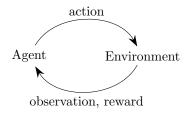
Open Problems

Course materials: goo.gl/5wsgbJ

Introduction and Overview

What is Reinforcement Learning?

- Branch of machine learning concerned with taking sequences of actions
- Usually described in terms of agent interacting with a previously unknown environment, trying to maximize cumulative reward



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motor Control and Robotics

Robotics:

- Observations: camera images, joint angles
- Actions: joint torques
- Rewards: stay balanced, navigate to target locations, serve and protect humans

Business Operations

Inventory Management

- Observations: current inventory levels
- Actions: number of units of each item to purchase
- Rewards: profit
- Resource allocation: who to provide customer service to first

 Routing problems: in management of shipping fleet, which trucks / truckers to assign to which cargo

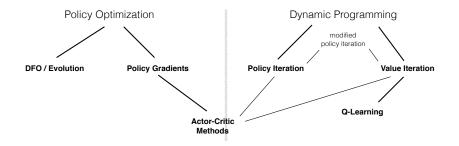
Games

A different kind of optimization problem (min-max) but still considered to be RL.

- ► Go (complete information, deterministic) *AlphaGo*²
- Backgammon (complete information, stochastic) TD-Gammon³
- Stratego (incomplete information, deterministic)
- Poker (incomplete information, stochastic)

 $^{^2} David$ Silver, Aja Huang, et al. "Mastering the game of Go with deep neural networks and tree search". In: Nature 529.7587 (2016), pp. 484–489.

Approaches to RL



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

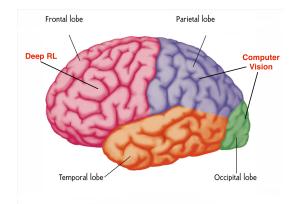
What is Deep RL?

- RL using nonlinear function approximators
- Usually, updating parameters with stochastic gradient descent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What's Deep RL?

Whatever the front half of the cerebral cortex does (motor and executive cortices)



Markov Decision Processes

Definition

- Markov Decision Process (MDP) defined by (S, A, P), where
 - ► S: state space
 - ► A: action space
 - P(r, s' | s, a): a transition probability distribution

- Extra objects defined depending on problem setting
 - μ : Initial state distribution
 - γ: discount factor

- In each episode, the initial state is sampled from μ, and the process proceeds until the *terminal state* is reached. For example:
 - Taxi robot reaches its destination (termination = good)

- Waiter robot finishes a shift (fixed time)
- Walking robot falls over (termination = bad)
- ► Goal: maximize expected reward per episode

Policies

- Deterministic policies: $a = \pi(s)$
- ► Stochastic policies: a ~ π(a | s)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Parameterized policies: π_{θ}

Episodic Setting

$$egin{aligned} &s_0 \sim \mu(s_0) \ &a_0 \sim \pi(a_0 \mid s_0) \ &s_1, r_0 \sim P(s_1, r_0 \mid s_0, a_0) \ &a_1 \sim \pi(a_1 \mid s_1) \ &s_2, r_1 \sim P(s_2, r_1 \mid s_1, a_1) \ & \dots \ &a_{T-1} \sim \pi(a_{T-1} \mid s_{T-1}) \ &s_{T}, r_{T-1} \sim P(s_T \mid s_{T-1}, a_{T-1}) \end{aligned}$$

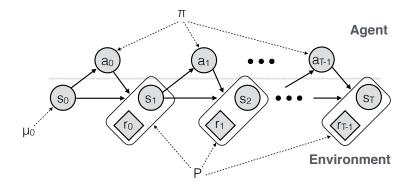
)

Objective:

maximize
$$\eta(\pi)$$
, where

$$\eta(\pi) = E[r_0 + r_1 + \cdots + r_{T-1} \mid \pi]$$

Episodic Setting



Objective:

maximize
$$\eta(\pi), \,\,$$
 where $\eta(\pi)= {\sf E}[{\it r}_0+{\it r}_1+\dots+{\it r}_{{\cal T}-1}\,|\,\pi]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parameterized Policies

- A family of policies indexed by parameter vector $heta \in \mathbb{R}^d$
 - Deterministic: $a = \pi(s, \theta)$
 - Stochastic: $\pi(a \mid s, \theta)$
- Analogous to classification or regression with input s, output a. E.g. for neural network stochastic policies:
 - Discrete action space: network outputs vector of probabilities
 - Continuous action space: network outputs mean and diagonal covariance of Gaussian

Reinforcement Learning via Black-Box Optimization

(ロ)、(型)、(E)、(E)、 E) の(の)

Derivative Free Optimization Approach

Objective:

maximize $E[R \mid \pi(\cdot, \theta)]$

- View $\theta \to \blacksquare \to R$ as a black box
- Ignore all other information other than R collected during episode

Evolutionary algorithm

Works embarrassingly well

Method	Mean Score	Reference
Nonreinforcement learning		
Hand-coded	631,167	Dellacherie (Fahey, 2003)
Genetic algorithm	586,103	(Böhm et al., 2004)
Reinforcement learning		
Relational reinforcement	≈50	Ramon and Driessens (2004)
learning+kernel-based regression		
Policy iteration	3183	Bertsekas and Tsitsiklis (1996)
Least squares policy iteration	<3000	Lagoudakis, Parr, and Littman (2002)
Linear programming + Bootstrap	4274	Farias and van Roy (2006)
Natural policy gradient	≈6800	Kakade (2001)
CE+RL	21,252	
CE+RL, constant noise	72,705	
CE+RL, decreasing noise	348,895	

Approximate Dynamic Programming Finally Performs Well in the Game of Tetris

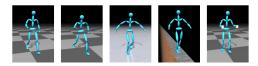
Victor Gabillon Mohammad Ghavamzadeh" Bruno Scherrer INRIA Lille - Nord Europe, Team Sequel, FRANCE & Adobe Research Team Maia, FRANCE victor.gabillow finria (r mohammade hohammadeh finria (r bruno.scherrer finria (r István Szita and András Lörincz. "Learning Tetris using the noisy cross-entropy method". In: Neural computation 18.12 (2006), pp. 2936–2941

Victor Gabillon, Mohammad Ghavamzadeh, and Bruno Scherrer. "Approximate Dynamic Programming Finally Performs Well in the Game of Tetris". In: Advances in Neural Information Processing Systems. 2013

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

- Evolutionary algorithm
- Works embarrassingly well
- A similar algorithm, Covariance Matrix Adaptation, has become standard in graphics:

Jack M. Wang David J. Fleet Aaron Hertzmann University of Toronto



Initialize $\mu \in \mathbb{R}^d, \sigma \in \mathbb{R}^d$ for iteration $= 1, 2, \ldots$ do Collect n samples of $\theta_i \sim N(\mu, \text{diag}(\sigma))$ Perform a noisy evaluation $R_i \sim \theta_i$ Select the top p% of samples (e.g. p = 20), which we'll call the elite set Fit a Gaussian distribution, with diagonal covariance, to the elite set, obtaining a new μ, σ . end for Return the final μ .

- Analysis: a very similar algorithm is an minorization-maximization (MM) algorithm, guaranteed to monotonically increase expected reward
- Recall that Monte-Carlo EM algorithm collects samples, reweights them, and them maximizes their logprob
- We can derive MM algorithm where each iteration you maximize ∑_i log p(θ_i)R_i

Policy Gradient Methods

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Policy Gradient Methods: Overview

Problem:

maximize $E[R \mid \pi_{\theta}]$

Intuitions: collect a bunch of trajectories, and ...

- 1. Make the good trajectories more probable
- 2. Make the good actions more probable (actor-critic, GAE)

3. Push the actions towards good actions (DPG, SVG)

Score Function Gradient Estimator

Consider an expectation E_{x~p(x | θ)}[f(x)]. Want to compute gradient wrt θ

$$\begin{aligned} \nabla_{\theta} E_{x}[f(x)] &= \nabla_{\theta} \int \mathrm{d}x \ p(x \mid \theta) f(x) \\ &= \int \mathrm{d}x \ \nabla_{\theta} p(x \mid \theta) f(x) \\ &= \int \mathrm{d}x \ p(x \mid \theta) \frac{\nabla_{\theta} p(x \mid \theta)}{p(x \mid \theta)} f(x) \\ &= \int \mathrm{d}x \ p(x \mid \theta) \nabla_{\theta} \log p(x \mid \theta) f(x) \\ &= E_{x}[f(x) \nabla_{\theta} \log p(x \mid \theta)]. \end{aligned}$$

- Last expression gives us an unbiased gradient estimator. Just sample x_i ~ p(x | θ), and compute ĝ_i = f(x_i)∇_θ log p(x_i | θ).
- Need to be able to compute and differentiate density p(x | θ) wrt θ

Derivation via Importance Sampling

Alternate Derivation Using Importance Sampling

$$\mathbb{E}_{\mathrm{x}\sim heta}\left[f(x)
ight] = \mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[rac{p(x\mid heta)}{p(x\mid heta_{\mathrm{old}})}f(x)
ight]
onumber \
abla_{ heta}\mathbb{E}_{\mathrm{x}\sim heta}\left[f(x)
ight] = \mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[rac{
abla_{ heta}p(x\mid heta)}{p(x\mid heta_{\mathrm{old}})}f(x)
ight]
onumber \
abla_{ heta}\mathbb{E}_{\mathrm{x}\sim heta}\left[f(x)
ight]|_{ heta= heta_{\mathrm{old}}} = \mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[rac{
abla_{ heta}p(x\mid heta)}{p(x\mid heta_{\mathrm{old}})}f(x)
ight]
onumber \
onumber \
abla_{ heta}=\mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[
abla_{ heta}\log p(x\mid heta)|_{ heta= heta_{\mathrm{old}}}f(x)
ight]
onumber \
abla_{ heta}=\mathbb{E}_{\mathrm{x}\sim heta_{\mathrm{old}}}\left[
abla_{ heta}\log p(x\mid heta)|_{ heta= heta_{\mathrm{old}}}f(x)
ight]$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

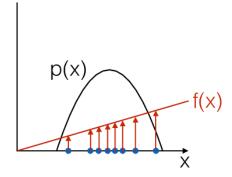
Score Function Gradient Estimator: Intuition

 $\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i \mid \theta)$

- Let's say that f(x) measures how good the sample x is.
- Moving in the direction ĝ_i pushes up the logprob of the sample, in proportion to how good it is
- Valid even if f(x) is discontinuous, and unknown, or sample space (containing x) is a discrete set

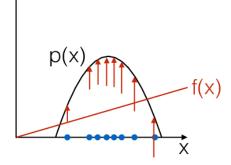
Score Function Gradient Estimator: Intuition

$$\hat{g}_i = f(x_i)
abla_{ heta} \log p(x_i \mid heta)$$



Score Function Gradient Estimator: Intuition

$$\hat{g}_i = f(x_i)
abla_{ heta} \log p(x_i \mid heta)$$



Score Function Gradient Estimator for Policies

Now random variable x is a whole trajectory

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

$$\nabla_{\theta} E_{\tau}[R(\tau)] = E_{\tau}[\nabla_{\theta} \log p(\tau \mid \theta)R(\tau)]$$

• Just need to write out $p(\tau \mid \theta)$:

$$p(\tau \mid \theta) = \mu(s_0) \prod_{t=0}^{T-1} [\pi(a_t \mid s_t, \theta) P(s_{t+1}, r_t \mid s_t, a_t)]$$
$$\log p(\tau \mid \theta) = \log \mu(s_0) + \sum_{t=0}^{T-1} [\log \pi(a_t \mid s_t, \theta) + \log P(s_{t+1}, r_t \mid s_t, a_t)]$$

$$\nabla_{\theta} \log p(\tau \mid \theta) = \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, \theta)$$
$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[R \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, \theta) \right]$$

Interpretation: using good trajectories (high R) as supervised examples in classification / regression

Policy Gradient-Slightly Better Formula

Previous slide:

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{\tau-1} r_t \right) \left(\sum_{t=0}^{\tau-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \right) \right]$$

But we can cut trajectory to t steps and derive gradient estimator for one reward term r_{t'}.

$$\nabla_{\theta} \mathbb{E}\left[r_{t'}\right] = \mathbb{E}\left[r_{t'} \sum_{t=0}^{t} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta)\right]$$

Sum this formula over t, obtaining

$$\nabla_{\theta} \mathbb{E}[R] = \mathbb{E}\left[\sum_{t=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta)\right]$$
$$= \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \sum_{t'=t}^{T-1} r_{t'}\right]$$

э

Adding a Baseline

• Suppose $f(x) \ge 0$, $\forall x$

- Then for every x_i, gradient estimator ĝ_i tries to push up it's density
- We can derive a new unbiased estimator that avoids this problem, and only pushes up the density for better-than-average x_i.

$$egin{aligned}
abla_ heta \mathbb{E}_x\left[f(x)
ight] &=
abla_ heta \mathbb{E}_x\left[f(x) - b
ight] \ &= \mathbb{E}_x\left[
abla_ heta \log p(x \mid heta)(f(x) - b)
ight] \end{aligned}$$

 A near-optimal choice of b is always 𝔼 [f(x)] (which must be estimated)

Policy Gradient with Baseline

Recall

$$abla_{ heta} \mathbb{E}_{ au}\left[R
ight] = \sum_{t'=0}^{T-1} r_{t'} \sum_{t=t}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta)$$

• Using the $\mathbb{E}_{a_t} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \right] = 0$, we can show

$$abla_ heta \mathbb{E}_ au \left[R
ight] = \mathbb{E}_ au \left[\sum_{t=0}^{T-1}
abla_ heta \log \pi(a_t \mid s_t, heta) igg(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) igg)
ight]$$

for any "baseline" function $b:\mathcal{S}
ightarrow \mathbb{R}$

- ► Increase logprob of action a_t proportionally to how much returns $\sum_{t=t'}^{T-1} r_{t'}$ are better than expected
- Later: use value functions to further isolate effect of action, at the cost of bias
- For more general picture of score function gradient estimator, see stochastic computation graphs⁴.

That's all for today

Course Materials: goo.gl/5wsgbJ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Variance Reduction for Policy Gradients

Review (I)

- Process for generating trajectory $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$ $s_0 \sim \mu(s_0)$ $a_0 \sim \pi(a_0 \mid s_0)$ $s_1, r_0 \sim P(s_1, r_0 \mid s_0, a_0)$ $a_1 \sim \pi(a_1 \mid s_1)$ $s_2, r_1 \sim P(s_2, r_1 \mid s_1, a_1)$. . . $a_{T-1} \sim \pi(a_{T-1} \mid s_{T-1})$ $s_{T}, r_{T-1} \sim P(s_T \mid s_{T-1}, a_{T-1})$
- Given parameterized policy π(a | s, θ), the optimization problem is

$$\max_{\theta} \operatorname{maximize} \mathbb{E}_{\tau} \left[R \mid \pi(\cdot \mid \cdot, \theta) \right]$$
where $R = r_0 + r_1 + \cdots + r_{T-1}$.

Review (II)

In general, we can compute gradients of expectations with the score function gradient estimator

 $\nabla_{\theta} \mathbb{E}_{x \sim p(x \mid \theta)} \left[f(x) \right] = \mathbb{E}_{x} \left[\nabla_{\theta} \log p(x \mid \theta) f(x) \right]$

We derived a formula for the policy gradient

$$abla_ heta \mathbb{E}_ au\left[R
ight] = \mathbb{E}_ au\left[\sum_{t=0}^{T-1}
abla_ heta \log \pi(a_t \mid s_t, heta) igg(\sum_{t=t'}^{T-1} r_{t'} - b(s_t)igg)
ight]$$

Value Functions

• The state-value function V^{π} is defined as:

$$V^{\pi}(s) = E[r_0 + r_1 + r_2 + \dots | s_0 = s]$$

Measures expected future return, starting with state s
 The state-action value function Q^π is defined as

$$Q^{\pi}(s, a) = E[r_0 + r_1 + r_2 + \dots | s_0 = s, a_0 = a]$$

• The advantage function A^{π} is

$$A^{\pi}(s,a)=Q^{\pi}(s,a)-V^{\pi}(s)$$

Measures how much better is action a than what the policy π would've done.

Refining the Policy Gradient Formula

Recall

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) \right) \right]$$
$$= \sum_{t=0}^{T-1} \mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) \right) \right]$$
$$= \sum_{t=0}^{T-1} \mathbb{E}_{s_0 \dots a_t} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \mathbb{E}_{r_t s_{t+1} \dots s_T} \left[\left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) \right) \right] \right]$$
$$= \sum_{t=0}^{T-1} \mathbb{E}_{s_0 \dots a_t} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \mathbb{E}_{r_t s_{t+1} \dots s_T} \left[Q^{\pi}(s_t, a_t) - b(s_t) \right] \right]$$

Where the last equality used the fact that

$$\mathbb{E}_{r_t s_{t+1} \dots s_T} \left[\sum_{t=t'}^{T-1} r_{t'} \right] = Q^{\pi}(s_t, a_t)$$

Refining the Policy Gradient Formula

From the previous slide, we've obtained

$$abla_ heta \mathbb{E}_ au\left[R
ight] = \mathbb{E}_ au\left[\sum_{t=0}^{T-1}
abla_ heta \log \pi(a_t \mid s_t, heta)(Q^\pi(s_t, a_t) - b(s_t))
ight]$$

Now let's define b(s) = V^π(s), which turns out to be near-optimal⁵. We get

$$abla_ heta \mathbb{E}_ au \left[R
ight] = \mathbb{E}_ au \left[\sum_{t=0}^{ au-1}
abla_ heta \log \pi(a_t \mid s_t, heta) A^\pi(s_t, a_t)
ight]$$

 Intuition: increase the probability of good actions (positive advantage) decrease the probability of bad ones (negative advantage)

⁵Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. "Variance reduction techniques for gradient estimates in reinforcement learning". In: *The Journal of Machine Learning Research* 5<u>4</u>(2004), pp. 1471=1530.

Variance Reduction

Now, we have the following policy gradient formula:

$$abla_ heta \mathbb{E}_ au \left[R
ight] = \mathbb{E}_ au \left[\sum_{t=0}^{ au-1}
abla_ heta \log \pi(a_t \mid s_t, heta) A^\pi(s_t, a_t)
ight]$$

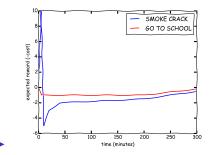
- A^π is not known, but we can plug in a random variable
 Â_t, an advantage estimator
- Previously, we showed that taking

$$\hat{A}_t = r_t + r_{t+1} + r_{t+2} + \cdots - b(s_t)$$

for any function $b(s_t)$, gives an unbiased policy gradient estimator. $b(s_t) \approx V^{\pi}(s_t)$ gives variance reduction.

The Delayed Reward Problem

 One reason RL is difficult is the long delay between action and reward



The Delayed Reward Problem

With policy gradient methods, we are confounding the effect of multiple actions:

$$\hat{A}_t = r_t + r_{t+1} + r_{t+2} + \cdots - b(s_t)$$

mixes effect of $a_t, a_{t+1}, a_{t+2}, \ldots$

- SNR of \hat{A}_t scales roughly as 1/T
 - Only a_t contributes to signal A^π(s_t, a_t), but a_{t+1}, a_{t+2},... contribute to noise.

Var. Red. Idea 1: Using Discounts

- ► Discount factor \(\gamma\), 0 < \(\gamma\) < 1, downweights the effect of rewars that are far in the future—ignore long term dependencies</p>
- We can form an advantage estimator using the discounted return:

$$\hat{A}_{t}^{\gamma} = \underbrace{r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots}_{\text{discounted return}} - b(s_{t})$$

reduces to our previous estimator when $\gamma = 1$.

 So advantage has expectation zero, we should fit baseline to be *discounted value function*

$$V^{\pi,\gamma}(s) = \mathbb{E}_{\tau}\left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s\right]$$

• \hat{A}_t^{γ} is a biased estimator of the advantage function

Var. Red. Idea 2: Value Functions in the Future

 Another approach for variance reduction is to use the value function to estimate future rewards

$$r_t + r_{t+1} + r_{t+2} + \dots$$
 use empirical rewards
 \Rightarrow
 $r_t + V(s_{t+1})$ cut off at one timestep
 $r_t + r_{t+1} + V(s_{t+2})$ cut off at two timesteps

Adding the baseline again, we get the advantage estimators

. . .

$$\hat{A}_t = r_t + V(s_{t+1}) - V(s_t)$$
 cut off at one timestep
 $\hat{A}_t = r_t + r_{t+1} + V(s_{t+2}) - V(s_t)$ cut off at two timesteps ...

Combining Ideas 1 and 2

- Can combine discounts and value functions in the future, e.g., Â_t = r_t + γV(s_{t+1}) − V(s_t), where V approximates discounted value function V^{π,γ}.
- The above formula is called an *actor-critic* method, where *actor* is the policy π, and *critic* is the value function V.⁶
- Going further, the generalized advantage estimator⁷

$$\hat{A}_{t}^{\gamma,\lambda} = \delta_{t} + (\gamma\lambda)\delta_{t+1} + (\gamma\lambda)^{2}\delta_{t+2} + \dots$$

where $\delta_{t} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$

Interpolates between two previous estimators:

$$\begin{split} \lambda &= 0: \quad r_t + \gamma V(s_{t+1}) - V(s_t) & (\text{low v, high b}) \\ \lambda &= 1: \quad r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots - V(s_t) & (\text{low b, high v}) \end{split}$$

э

⁶Vijay R Konda and John N Tsitsiklis. "Actor-Critic Algorithms." In: Advances in Neural Information Processing Systems. Vol. 13. Citeseer. 1999, pp. 1008–1014.

⁷ John Schulman, Philipp Moritz, et al. "High-dimensional continuous control using generalized advantage estimation". In: *arXiv preprint arXiv:1506.02438* (2015). ← □ ▷ ← ⑦ ▷ ← ② ▷ ← ③ ▷ ← ③ ▷ ← ③

Alternative Approach: Reparameterization

- ▶ Suppose problem has continuous action space, $a \in \mathbb{R}^d$
- Then $\frac{d}{da}Q^{\pi}(s,a)$ tells use how to improve our action
- ► We can use reparameterization trick, so a is a deterministic function a = f(s, z), where z is noise. Then,

$$abla_ heta \mathbb{E}_ au\left[{{ extsf{R}}}
ight] =
abla_ heta Q^{\pi}(extsf{s}_0, extsf{a}_0) +
abla_ heta Q^{\pi}(extsf{s}_1, extsf{a}_1) + \dots$$

- This method is called the deterministic policy gradient⁸
- A generalized version, which also uses a dynamics model, is described as the stochastic value gradient⁹

⁸David Silver, Guy Lever, et al. "Deterministic policy gradient algorithms". In: *ICML*. 2014; Timothy P Lillicrap et al. "Continuous control with deep reinforcement learning". In: *arXiv preprint arXiv:1509.02971* (2015).

⁹Nicolas Heess et al. "Learning continuous control policies by stochastic value gradients". In: Advances in Neural Information Processing Systems. 2015, pp. 2926–2934.

Trust Region and Natural Gradient Methods

(ロ)、(型)、(E)、(E)、 E) の(の)

Optimization Issues with Policy Gradients

- Hard to choose reasonable stepsize that works for the whole optimization
 - we have a gradient estimate, no objective for line search
 - statistics of data (observations and rewards) change during learning
- They make inefficient use of data: each experience is only used to compute one gradient.
 - Given a batch of trajectories, what's the most we can do with it?

Policy Performance Function

• Let $\eta(\pi)$ denote the performance of policy π

 $\eta(\pi) = \mathbb{E}_{\tau}\left[R|\pi\right]$

The following neat identity holds:

 $\eta(\widetilde{\pi}) = \eta(\pi) + \mathbb{E}_{\tau \sim \widetilde{\pi}} \left[A^{\pi}(s_0, a_0) + A^{\pi}(s_1, a_1) + A^{\pi}(s_2, a_2) + \dots \right]$

• Proof: consider nonstationary policy $\pi_0 \pi_1 \pi_2, \ldots$

$$\eta(\tilde{\pi}\tilde{\pi}\tilde{\pi}\cdots) = \eta(\pi\pi\pi\cdots) + \eta(\tilde{\pi}\pi\pi\cdots) - \eta(\pi\pi\pi\cdots) + \eta(\tilde{\pi}\pi\pi\cdots) - \eta(\pi\pi\pi\cdots) + \eta(\tilde{\pi}\tilde{\pi}\pi\cdots) - \eta(\tilde{\pi}\pi\pi\cdots) + \eta(\tilde{\pi}\tilde{\pi}\tilde{\pi}\cdots) - \eta(\tilde{\pi}\tilde{\pi}\pi\cdots) + \dots$$

(日) (同) (三) (三) (三) (○) (○)

• t^{th} difference term equals $A^{\pi}(s_t, a_t)$

Local Approximation

We just derived an expression for the performance of a policy π̃ relative to π

$$\begin{split} \eta(\tilde{\pi}) &= \eta(\pi) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[A^{\pi}(s_0, a_0) + A^{\pi}(s_1, a_1) + \dots \right] \\ &= \eta(\pi) + \mathbb{E}_{s_{0:\infty} \sim \tilde{\pi}} \left[\mathbb{E}_{a_{0:\infty} \sim \tilde{\pi}} \left[A^{\pi}(s_0, a_0) + A^{\pi}(s_1, a_1) + \dots \right] \right] \end{split}$$

- \blacktriangleright Can't use this to optimize $\tilde{\pi}$ because state distribution has complicated dependence.
- Let's define L_π the *local approximation*, which ignores change in state distribution—can be estimated by sampling from π

$$\begin{aligned} \mathcal{L}_{\pi}(\tilde{\pi}) &= \mathbb{E}_{s_{0:\infty} \sim \pi} \left[\mathbb{E}_{a_{0:\infty} \sim \tilde{\pi}} \left[\mathcal{A}^{\pi}(s_{0}, a_{0}) + \mathcal{A}^{\pi}(s_{1}, a_{1}) + \dots \right] \right] \\ &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \tilde{\pi}} \left[\mathcal{A}^{\pi}(s_{t}, a_{t}) \right] \right] \\ &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \pi} \left[\frac{\tilde{\pi}(a_{t} \mid s_{t})}{\pi(a_{t} \mid s_{t})} \mathcal{A}^{\pi}(s_{t}, a_{t}) \right] \right] \\ &= \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T-1} \frac{\tilde{\pi}(a_{t} \mid s_{t})}{\pi(a_{t} \mid s_{t})} \mathcal{A}^{\pi}(s_{t}, a_{t}) \right] \end{aligned}$$

Local Approximation

Now let's consider parameterized policy, $\pi(a \mid s, \theta)$. Sample with θ_{old} , now write local approximation in terms of θ .

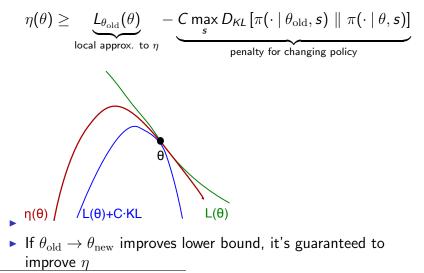
$$L_{\pi}(\tilde{\pi}) = \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \pi} \left[\frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} A^{\pi}(s_t, a_t) \right] \right]$$
$$\Rightarrow L_{\theta_{\text{old}}}(\theta) = \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \theta} \left[\frac{\pi(a_t \mid s_t, \theta)}{\pi(a_t \mid s_t, \theta_{\text{old}})} A^{\theta}(s_t, a_t) \right] \right]$$

• $L_{\theta_{\text{old}}}(\theta)$ matches $\eta(\theta)$ to first order around θ_{old} .

$$\begin{split} \nabla_{\theta} L_{\theta_{\text{old}}}(\theta) \Big|_{\theta=\theta_{0}} &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \theta} \left[\frac{\nabla_{\theta} \pi(a_{t} \mid s_{t}, \theta)}{\pi(a_{t} \mid s_{t}, \theta_{\text{old}})} A^{\theta}(s_{t}, a_{t}) \right] \right] \\ &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \theta} \left[\nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) A^{\theta}(s_{t}, a_{t}) \right] \right] \\ &= \nabla_{\theta} \eta(\theta) \Big|_{\theta=\theta_{\text{old}}} \end{split}$$

MM Algorithm

Theorem (ignoring some details)¹⁰



Review

- Want to optimize η(θ). Collected data with policy parameter θ_{old}, now want to do update
- Derived local approximation $L_{\theta_{\text{old}}}(\theta)$
- \blacktriangleright Optimizing KL penalized local approximation gives guaranteed improvement to η
- More approximations gives practical algorithm, called TRPO

TRPO—Approximations

- Steps:
 - Instead of max over state space, take mean
 - Linear approximation to L, quadratic approximation to KL divergence
 - Use hard constraint on KL divergence instead of penalty
- Solve the following problem approximately

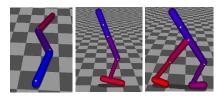
 $\begin{array}{l} \text{maximize } L_{\theta_{\text{old}}}(\theta) \\ \text{subject to} \quad \overline{D}_{\mathcal{KL}}[\theta_{\text{old}} \parallel \theta] \leq \delta \end{array}$

- Solve approximately through line search in the natural gradient direction s = F⁻¹g
- Resulting algorithm is a refined version of *natural policy* gradient¹¹

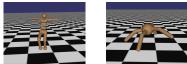
¹¹Sham Kakade. "A Natural Policy Gradient." In: *NIPS*. vol. 14. 2001, pp. 1531–1538.» イミッ イミッ マへ (?

Empirical Results: TRPO + GAE

 TRPO, with neural network policies, was applied to learn controllers for 2D robotic swimming, hopping, and walking, and playing Atari games¹²



 Used TRPO along with generalized advantage estimation to optimize locomotion policies for 3D simulated robots¹³



¹² John Schulman, Sergey Levine, et al. "Trust Region Policy Optimization". In: arXiv preprint arXiv:1502.05477 (2015).

¹³John Schulman, Philipp Moritz, et al. "High-dimensional continuous control using generalized advantage estimation". In: *arXiv preprint arXiv:1506.02438* (2015). ← □ ▶ ← ⑦ ▶ ← ≧ ▶ ← ≧ ▶ ← ≧ ▶

Putting In Perspective

Quick and incomplete overview of recent results with deep RL algorithms

- Policy gradient methods
 - ► TRPO + GAE
 - Standard policy gradient (no trust region) + deep nets
 + parallel implementation¹⁴
 - Repar trick¹⁵
- Q-learning¹⁶ and modifications¹⁷
- Combining search + supervised learning¹⁸

¹⁴V. Mnih et al. "Playing Atari with Deep Reinforcement Learning". In: arXiv preprint arXiv:1312.5602 (2013).

¹⁵Nicolas Heess et al. "Learning continuous control policies by stochastic value gradients". In: Advances in Neural Information Processing Systems. 2015, pp. 2926–2934; Timothy P Lillicrap et al. "Continuous control with deep reinforcement learning". In: arXiv preprint arXiv:1509.02971 (2015).

¹⁶V. Mnih et al. "Playing Atari with Deep Reinforcement Learning". In: arXiv preprint arXiv:1312.5602 (2013).

¹⁷Ziyu Wang, Nando de Freitas, and Marc Lanctot. "Dueling Network Architectures for Deep Reinforcement Learning". In: arXiv preprint arXiv:1511.06581 (2015); Hado V Hasselt. "Double Q-learning". In: Advances in Neural Information Processing Systems. 2010, pp. 2613–2621.

Open Problems

What's the Right Core Model-Free Algorithm?

 Policy gradients (score function vs. reparameterization, natural vs. not natural) vs. Q-learning vs. derivative-free optimization vs others

- Desiderata
 - scalable
 - sample-efficient
 - robust
 - learns from off-policy data

Exploration

- Exploration: actively encourage agent to reach unfamiliar parts of state space, avoid getting stuck in local maximum of performance
- Can solve finite MDPs in polynomial time with exploration¹⁹
 - optimism about new states and actions
 - maintain distribution over possible models, and plan with them (Bayesian RL, Thompson sampling)
- How to do exploration in deep RL setting? Thompson sampling²⁰, novelty bonus²¹

¹⁹Alexander L Strehl et al. "PAC model-free reinforcement learning". In: Proceedings of the 23rd international conference on Machine learning. ACM. 2006, pp. 881–888.

²⁰Ian Osband et al. "Deep Exploration via Bootstrapped DQN". . In: arXiv preprint arXiv:1602.04621 (2016).

²¹Bradly C Stadie, Sergey Levine, and Pieter Abbeel. "Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models". In: *arXiv preprint arXiv:1507.00814* (2015).

Hierarchy

walk to $\times \hdots$ fetch object y \hdots say z $\hdots \hdots 10^3$ time steps per day

イロト 不得 トイヨト イヨト

э.

footstep planning: 1 hz: 10⁵ timesteps / day

••••••

torque control: 100hz: 107 timesteps /day

More Open Problems

- Using learned models
- Learning from demonstrations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The End

Questions?

