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Applications: Models

1. Idea adoption



Idea adoption: an example
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Idea adoption representation

We represent an idea adoptions using
terminating temporal point processes:
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Idea adoption intensity
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Model inference from multiple adoptions

Conditional Idea adoption log-likelihood
intensities
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Theorem. For any choice of parametric memory,
the maximum likelihood problem is convex in B. |
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Nonparametric kernels

Multimodal influence/memory:
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Topic-sensitive rates

Topic-modulated influence:
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Memetracker
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Diffusion Network (small part)
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Recurrent events: beyond cascades

lipstick on a pig

Up to this point, we have
assumed we can map each
event to a cascade
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In general, especially in social networks:
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cascades in event data single nodes (or forests)
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Recurrent events representation

We represent messages using nonterminating
temporal point processes:
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Recurrent events intensity
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Applications: Models

2. Information reliability
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Information reliability: an example

Learning from the crowd (‘crowdlearning’) has
become very popular:
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Information reliability: key, simple idea

A source is trustworthy if:

Its contributions are
verified more frequently : vh l 4 vA l wi S
Over time, each document has ﬁ
':chl a different level of Lﬁ
o inherent unrealibility |
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At a time t, a document E Verifications: rarer

may be disputed Refutations: more frequent ,
17 |

[Tabibian et al., WWW 2017]



Representation: temporal point processes

is a Kenyan politician
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Intensity of statement additions

is a Kenyan politician
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Intensity of statement refutations

is a Kenyan politician
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Model inference from event data

Conditional intensities
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Theorem. The maximum likelihood problem is
convex in the model parameters.
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Wikipedia article reliability
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Source trustworthiness

Politics Politics
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[Tabibian et al., WWW 2017]



Applications: Models

3. Learning patterns
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Learning patterns: An example

1st year computer science student
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Learning patterns: content + dynamics

1st year computer science student

Introduction to programming
Discrete math

| Project presentation
I

R A

Content + Dynamics = Learning pattern

programming + semester
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presentation + week



People share same learning patterns

Introduction to programming
Discrete math
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Learning events representation

We represent the learning events using marked
temporal point processes:
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Learning pattern intensity
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User learning events intensity

Users adopt more than one learning pattern:

) N >

# of learning patterns is infinite.
Efficient model inference using
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Learning pattern (l): Version Control

Content Intensities
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Version control tasks tend to be specific,
quickly solved after performing few questions,

[Mavroforakis et al., WWW 2017]



Learning pattern (Il): Machine learning
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Machine learning tasks tend to be more
complex and require asking more questions

[Mavroforakis et al., WWW 2017]
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Types of users
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