Machine learning for Dynamic Social Network Analysis

Applications: Models

Manuel Gomez Rodriguez
Max Planck Institute for Software Systems

Outline of the Seminar

REPRESENTATION: TEMPORAL POINT PROCESSES

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

APPLICATIONS: MODELS

- 1. Information propagation
- 2. Information reliability
- 3. Knowledge acquisition

APPLICATIONS: CONTROL

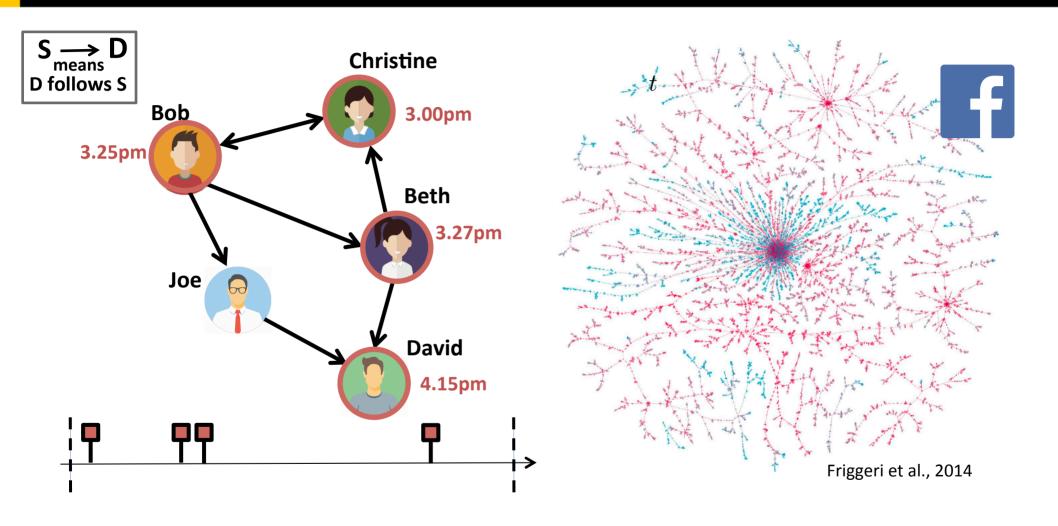
- 1. Activity shaping
- 2. When-to-post

Next

Applications: Models

- 1. Idea adoption
- 2. Information reliability
- 3. Knowledge acquisition

Idea adoption: an example



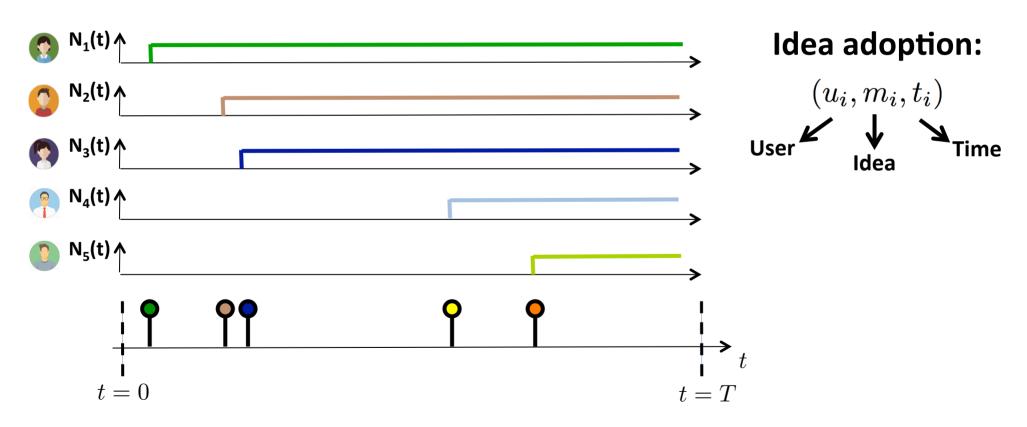
They can have an impact in the off-line world

theguardian

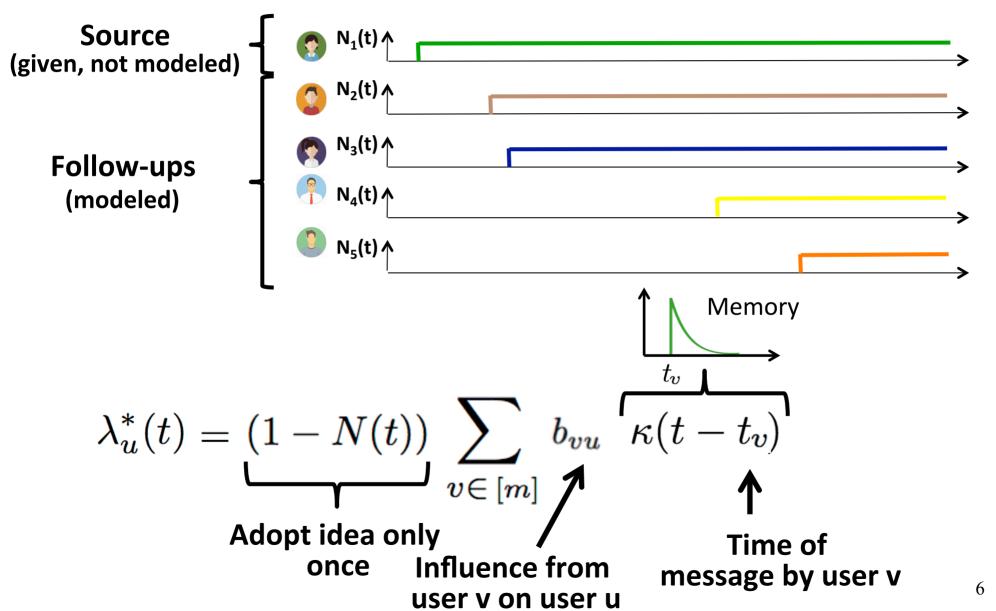
Click and elect: how fake news helped Donald Trump win a real election

Idea adoption representation

We represent an idea adoptions using terminating temporal point processes:



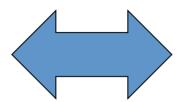
Idea adoption intensity



[Gomez-Rodriguez et al., ICML 2011]

Model inference from multiple adoptions

Conditional intensities

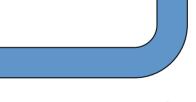


$$\lambda_u^*(t)$$

Idea adoption log-likelihood

$$\mathfrak{L} = \sum_{u=1}^{n} \log \lambda_u^*(t_u) - \int_0^T \lambda_u^*(\tau) d\tau$$

Maximum likelihood approach to find model parameters!

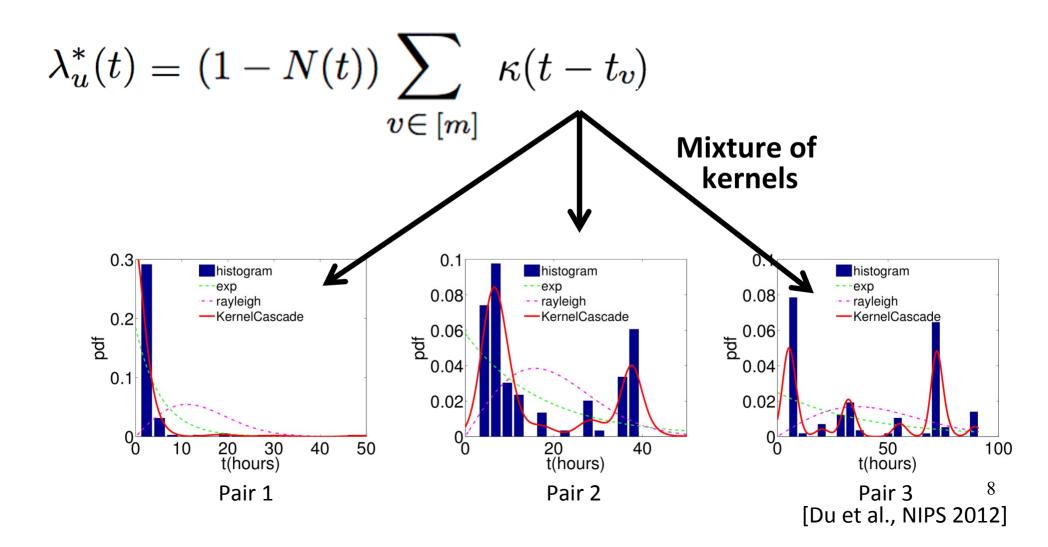


Sum up log-likelihoods of multiple ideas!

Theorem. For any choice of parametric memory, the maximum likelihood problem is convex in B.

Nonparametric kernels

Multimodal influence/memory:

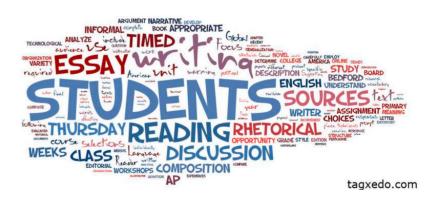


Topic-sensitive rates

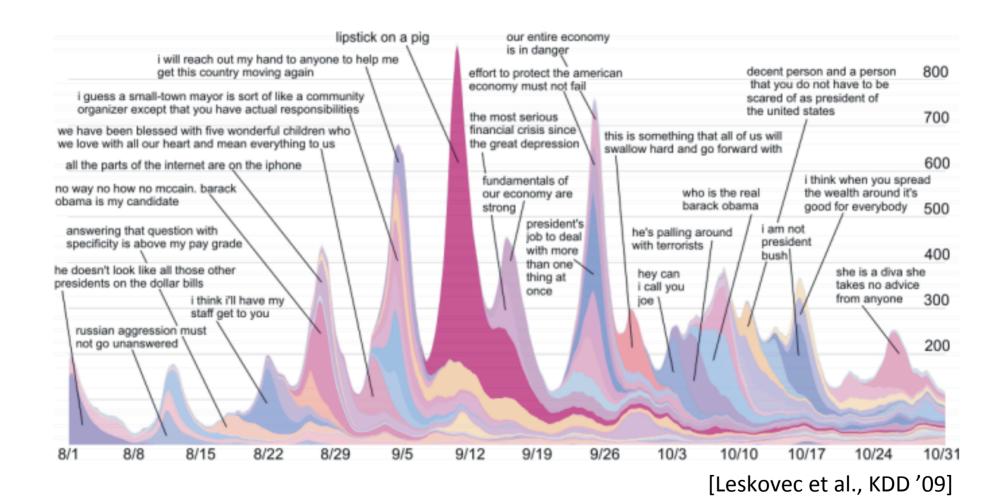
Topic-modulated influence:

$$b_{vu} = \sum_{l=1}^{K} b_{vu}^{\ l} m_l$$

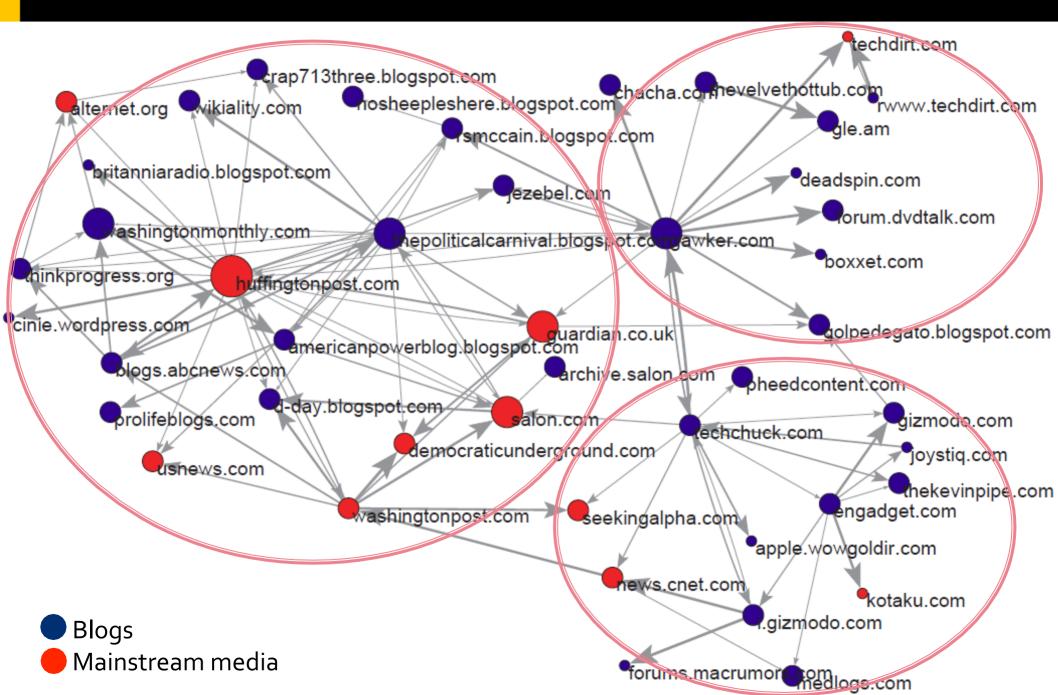
LDA weight for topic l



Memetracker

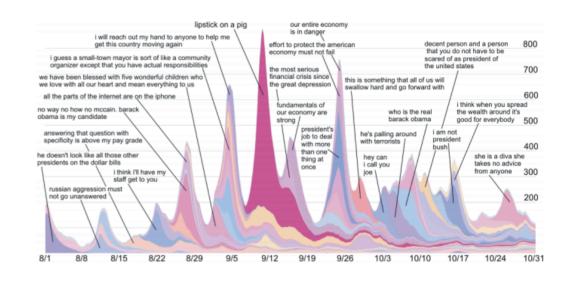


Diffusion Network (small part)



Recurrent events: beyond cascades

Up to this point, we have assumed we can map each event to a cascade



In general, especially in social networks:

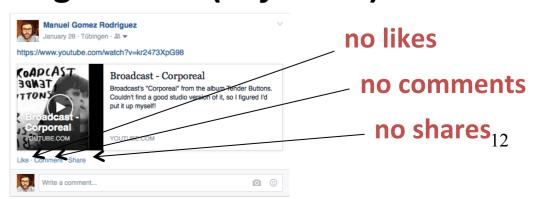
Difficult to distinguish cascades in event data

BUSINESS INSIDER

He has stuck to his decision so far; his recent Facebook status read, "I just killed a pig and a goat."

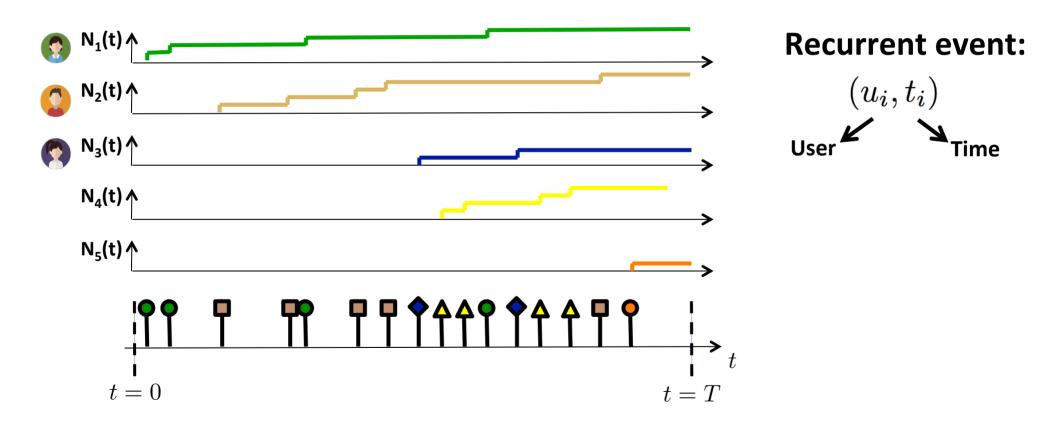
Mark Zuckerberg Is Killing Progressively Larger Animals

Most cascades are single nodes (or *forests*)

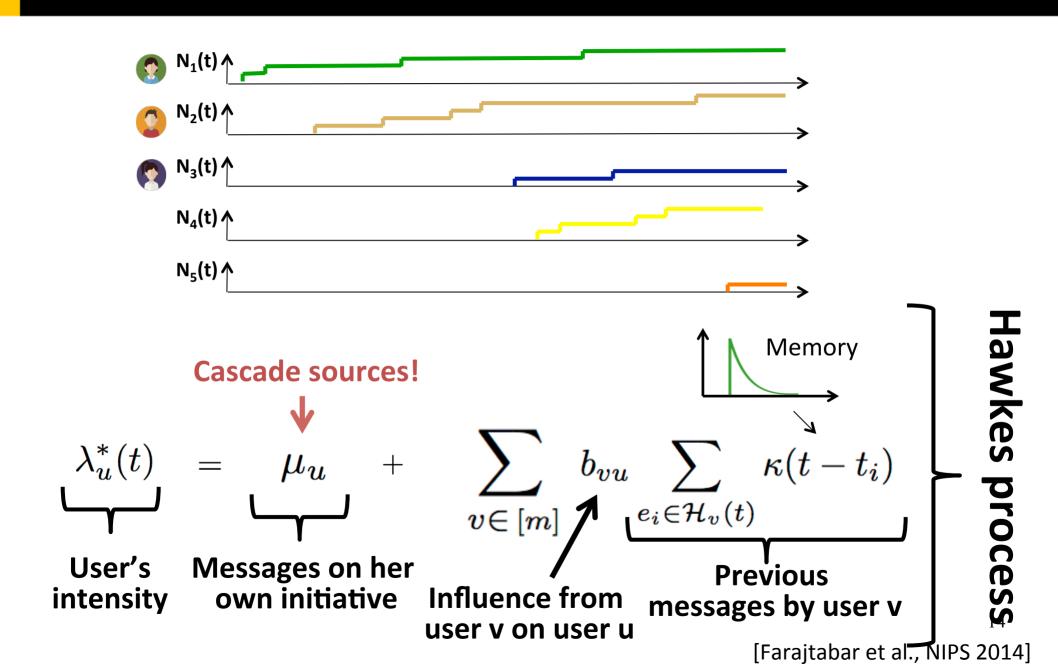


Recurrent events representation

We represent messages using nonterminating temporal point processes:



Recurrent events intensity

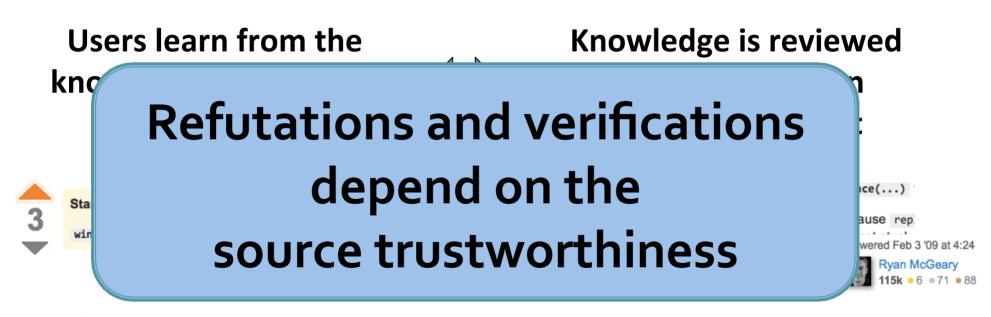


Applications: Models

- 1. Information propagation
 - 2. Information reliability
 - 3. Knowledge acquisition

Information reliability: an example

Learning from the crowd ('crowdlearning') has become very popular:



Barack Obama

"Barack" and "Obama" redirect here, For his father, see Barack Obama Sr, For other uses of "Barack", see Barack (disambiguation

Barack Hussein Obama II (US 16/1/be rock hu: sern ou barme/,[1][2] born August 4, 1961) is an American politician who is the 44th and was president of the Harvard Law Review. He was a com civil rights attorney and taught constitutional law at the Ur

current President of the United States. He is the first Afric Barack Obama: Revision history continental United States. Born in Honolulu, Hawaii, Oba

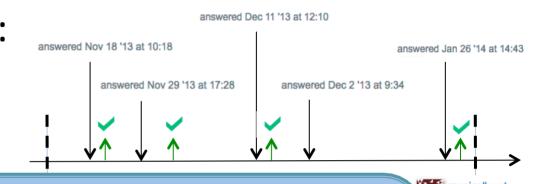
03:41, 28 November 2016 Ranze (talk I contribs) . . (301,105 bytes) (+18) . . (E 03:32, 28 November 2016 Xin Deui (talk I contribs) . . (301,087 bytes) (-68) . . (States House of Representatives in 2000 against incumb 00:57, 28 November 2016 SporkBot (talk I contribs) m .. (301,155 bytes) (-37) 07:03, 27 November 2016 Saiph121 (talk I contribs) . . (301,192 bytes) (+25) .

03:21, 20 September 2016 is a Kenyan politician possible vandalism by MLM2016 is an American politician

Information reliability: key, simple idea

A source is trustworthy if:

Its contributions are verified more frequently



Its c

Over time, each *document* has a different level of inherent unrealibility

Challenge

At a time t, a *document* may be *disputed*

Verifications: rarer

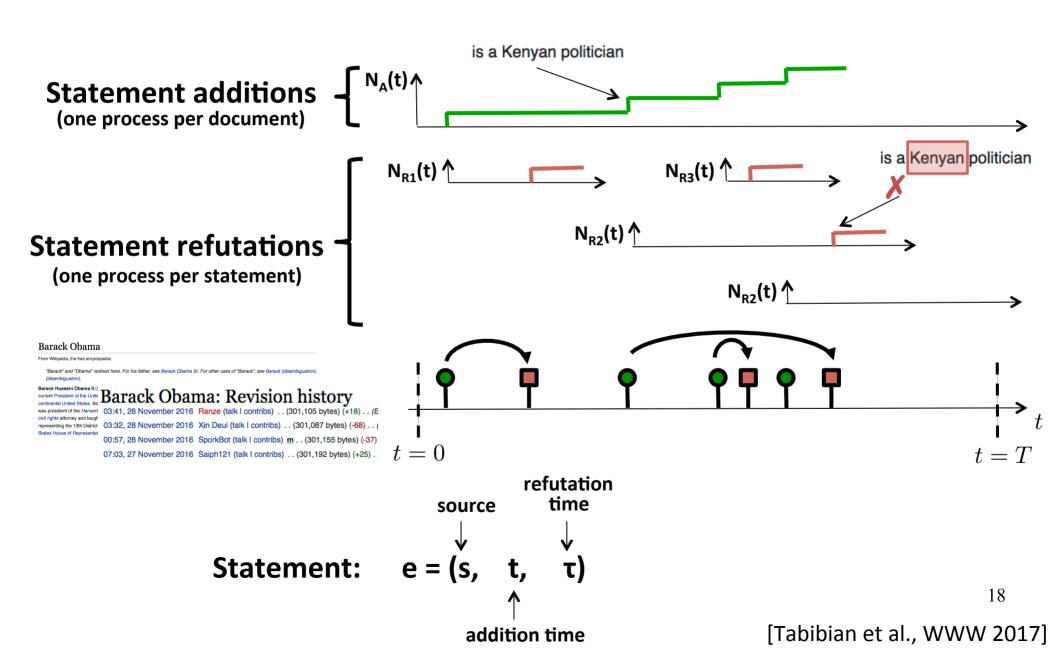
Refutations: more frequent

17

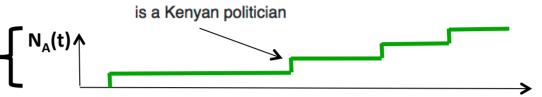
8 October 2015

User:Mgibby5

Representation: temporal point processes



Intensity of statement additions



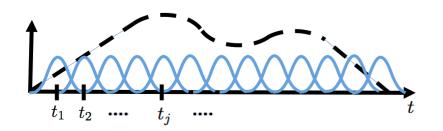
$$\lambda_d(t) = \sum_{j} \phi_{d,j} k(t - t_j) + \sum_{e_i \in \mathcal{H}_d(t)} \mathbf{w}_d^{\top} \boldsymbol{\gamma}_{s_i} g(t - \tau_i)$$

Intensity or rate (Statements per time unit)

Article unreliability

(Mixture of Gaussians)

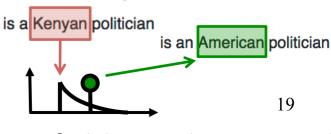
Temporal evolution of the *intrinsic* reliability of the article



Effect of past refutations

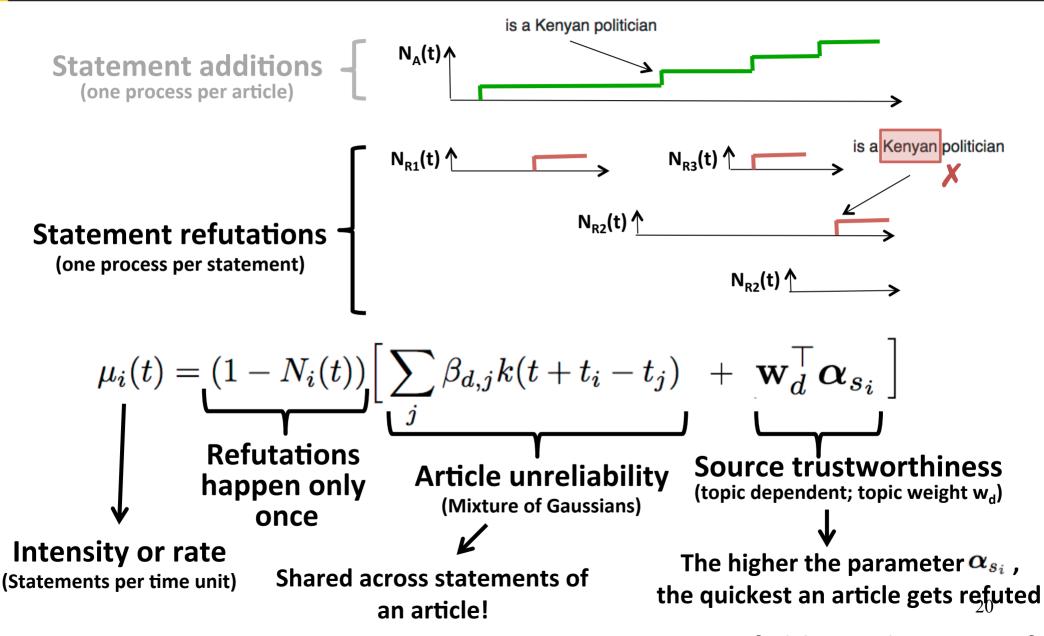
(topic dependent; topic weight w_d)

Refuted statements trigger the arrival of new statements to replace them



[Tabibian et al., WWW 2017]

Intensity of statement refutations



[Tabibian et al., WWW 2017]

Model inference from event data

Conditional intensities

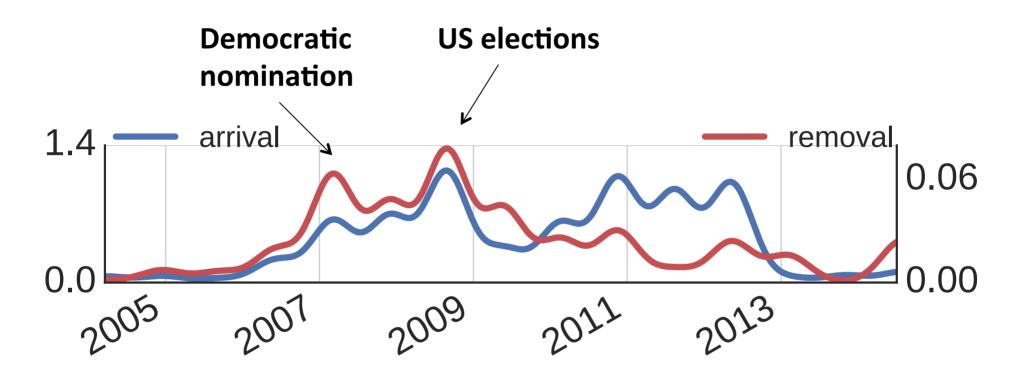
$$\{\lambda_d(t)\}$$
 $\{\mu_i(t)\}$

Events likelihood

$$\sum_{d=1}^{|\mathcal{D}|} \sum_{i:e_i \in \mathcal{H}_d(T)} \log \underbrace{p(t_i | \mathcal{H}_d(t_i), \phi_d, \{\gamma_s\}, \mathbf{w}_d)}_{\text{statements additions}} + \sum_{d=1}^{|\mathcal{D}|} \sum_{i:e_i \in \mathcal{H}_d(T)} \log \underbrace{p(\Delta_i | t_i, \beta_d, \{\alpha_s\}, \mathbf{w}_d)}_{\text{statements evaluations}}$$

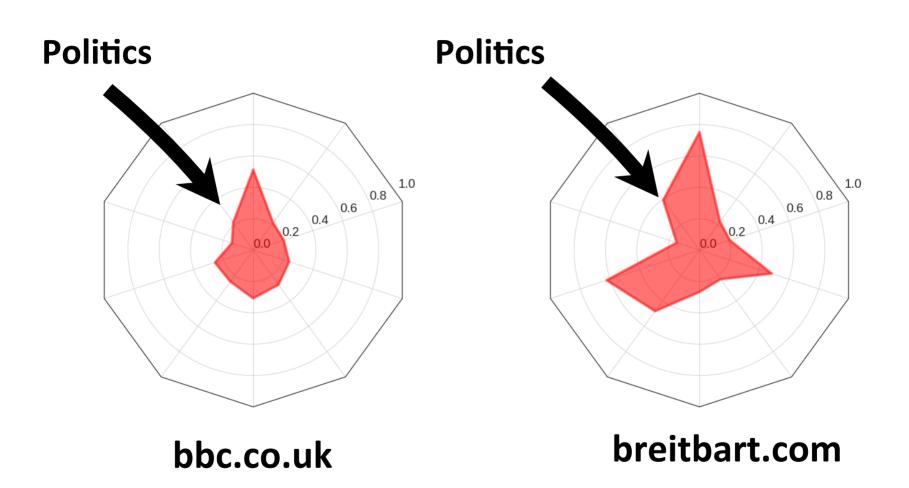
Theorem. The maximum likelihood problem is convex in the model parameters.

Wikipedia article reliability



Barack Obama's Wikipedia Article (Arrival of information vs intrinsic unreliability)

Source trustworthiness



Probability of refutation within 6 months in a stable Wikipedia article

Applications: Models

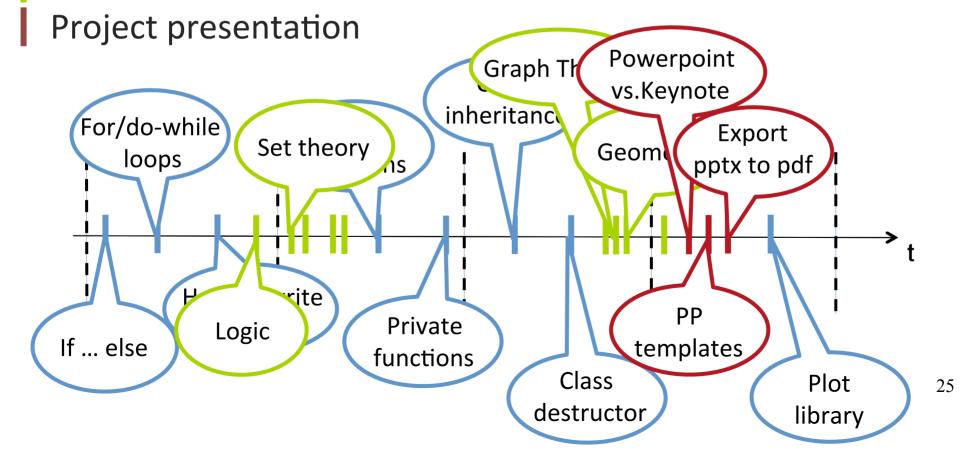
- 1. Information propagation
 - 2. Information reliability
 - 3. Learning patterns

Learning patterns: An example

1st year computer science student

Introduction to programming

Discrete math



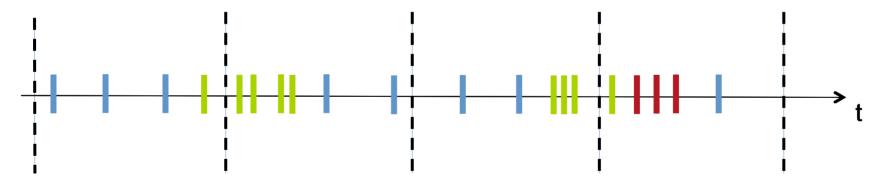
Learning patterns: content + dynamics

1st year computer science student

Introduction to programming

Discrete math

Project presentation



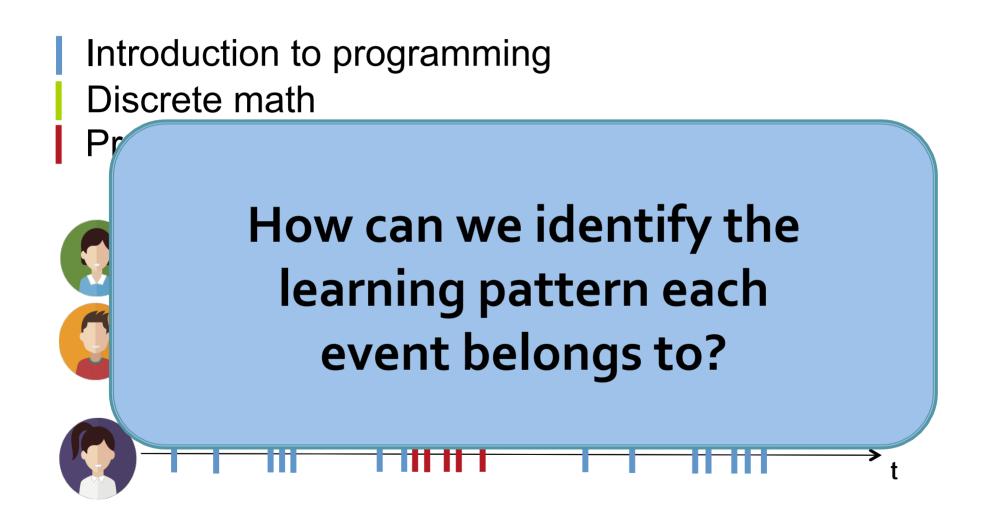
Content + Dynamics = *Learning pattern*

programming + semester

math + semester

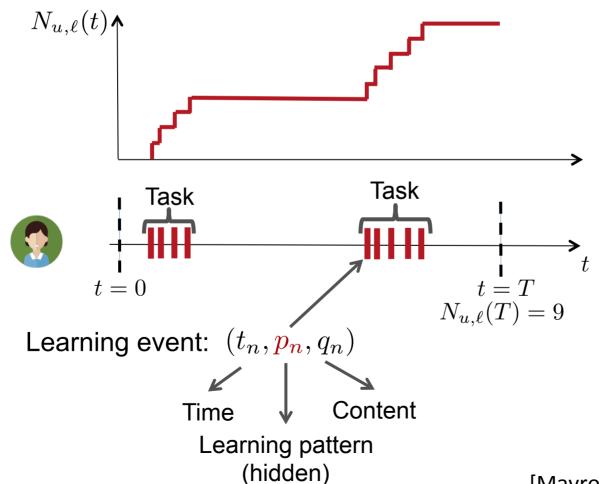
presentation + week

People share same learning patterns

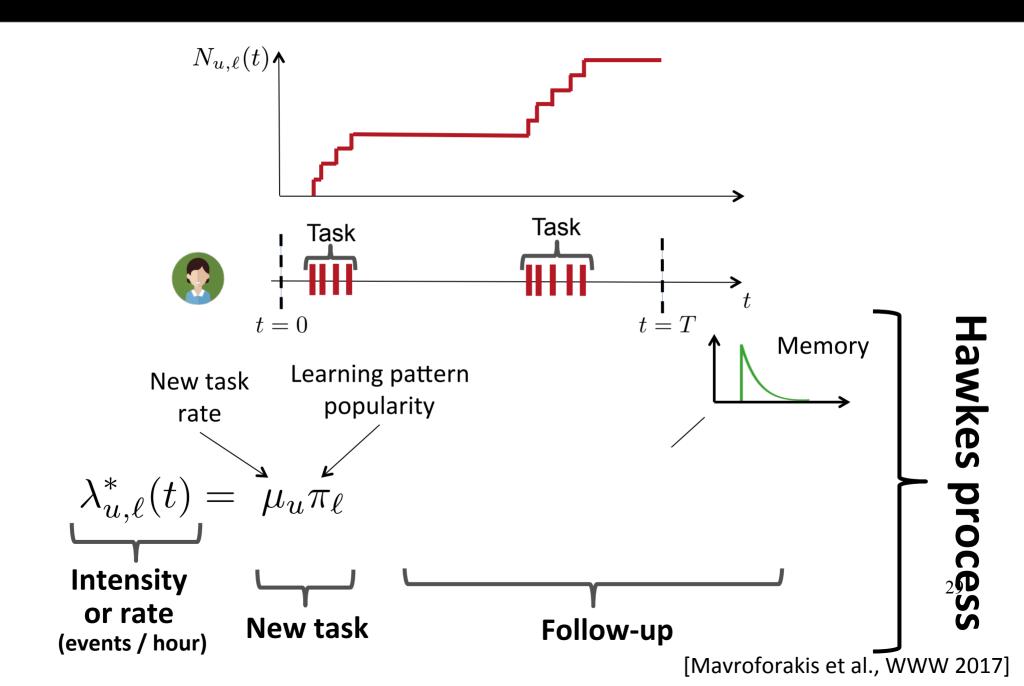


Learning events representation

We represent the learning events using marked temporal point processes:

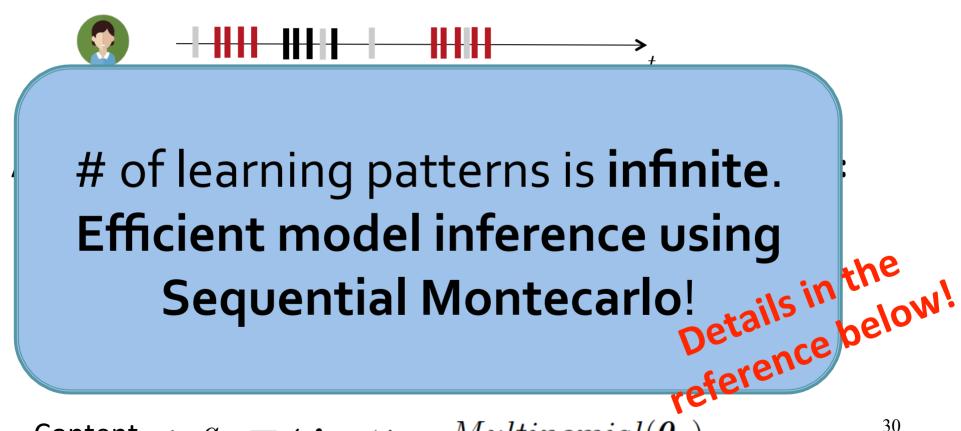


Learning pattern intensity



User learning events intensity

Users adopt more than one learning pattern:

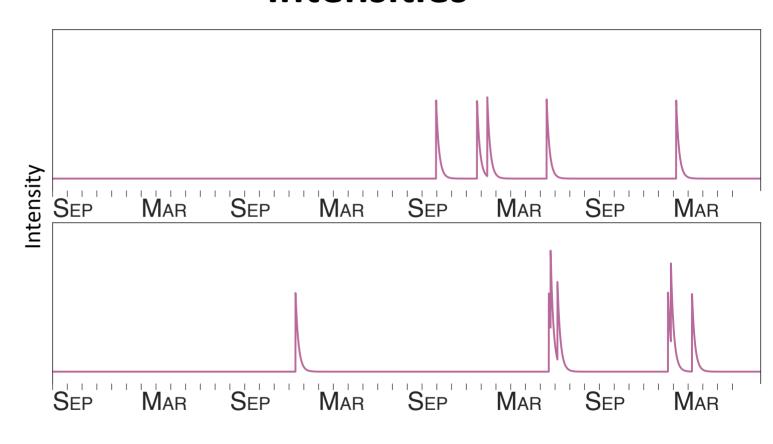


Learning pattern (I): Version Control

Content

mercurial version-control variables of the control of the control

Intensities



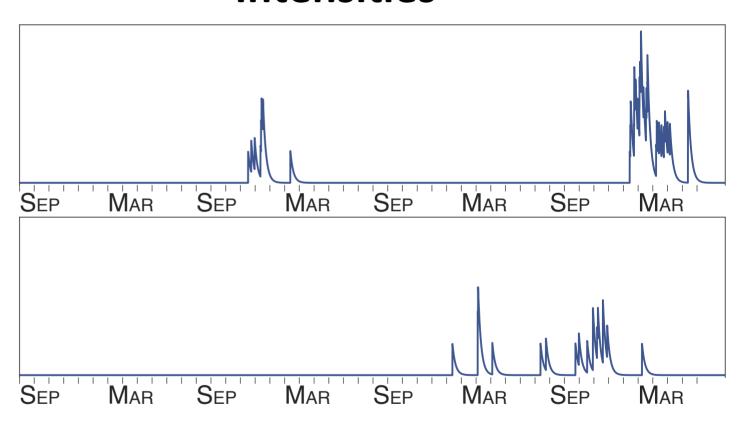
Version control tasks tend to be specific, quickly solved after performing few questions,

Learning pattern (II): Machine learning

Content

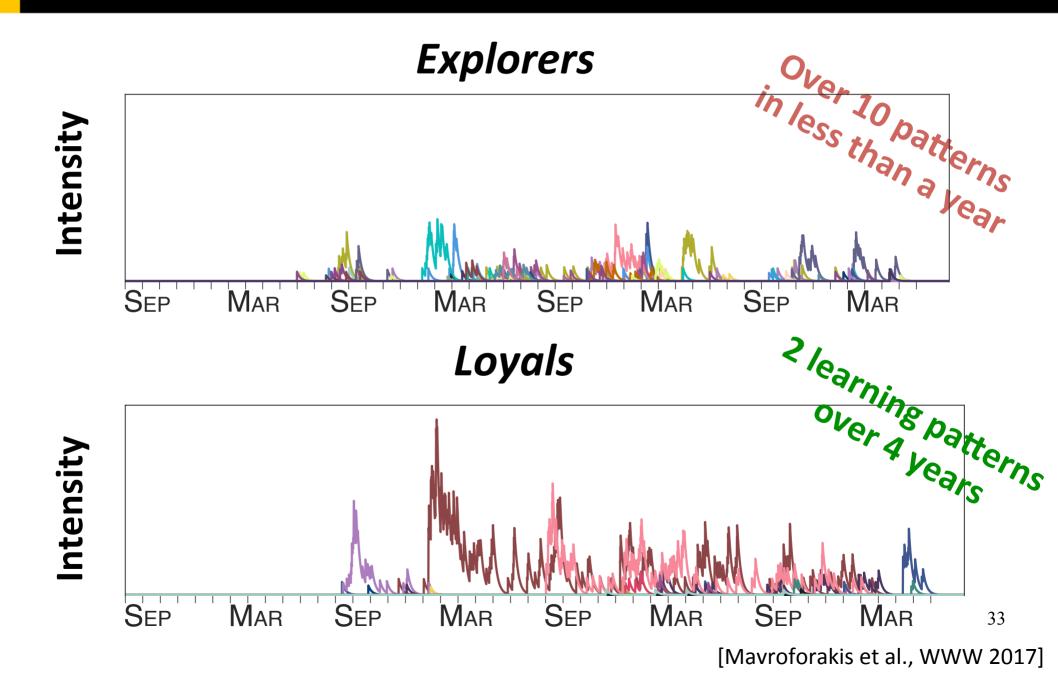
neural-network image-processing machine-learning computer-vision numpy probability state-merines plot of the processing of the processing

Intensities



Machine learning tasks tend to be more complex and require asking more questions

Types of users



REPRESENTATION: TEMPORAL POINT PROCESSES

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

APPLICATIONS: MODELS

- 1. Information propagation
- 2. Information reliability
- 3. Knowledge acquisition

APPLICATIONS: CONTROL

- 1. Activity shaping
- 2. When-to-post

Next