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Can LLMs reason about counterfactuals?

Several studies have looked at the ability of large language models to provide responses to
interventional and counterfactual questions.

Jin et al. "Cladder: Assessing causal reasoning in language models." NeurlPS, 2023.
Kiciman et al. "Causal reasoning and large language models: Opening a new frontier for causality." TMLR, 2023.
Zhang et al. "What if the tv was off? examining counterfactual reasoning abilities of multi-modal language models." CVPR, 2024.
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Deep dive:
Can LLMs reason about counterfactuals of their own outputs?

Chatzi et al. “Counterfactual token generation in large language models.” CLeaR, 2025.
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It is the color of the sea.

Prompt: What is your favorite color?
Response: | don't really like colors.
Black is fine | guess...



Factual and countertactual token generation

Prompt: What is your favorite color?
Response: My favorite color is blue.
It is the color of the sea.

Factual generation



Factual and countertactual token generation

Prompt: What is your favorite colo%
Response: My favorite color is blue® *
It is the color of the sea.

Factual generation



Factual and countertactual token generation

Prompt: What is your favorite color?' Prompt: What is your favorite color?
Response: My favorite color is blue” Response: My favorite color is green.

It is the color of the sea.

Factual generation



Factual and countertactual token generation

Prompt: What is your favorite color?' Prompt: What is your favorite color?
Response: My favorite color is blue” Response: My favorite color is green.

It is the color of the sea. It is the color of the trees.

Factual generation Counterfactual generation



Factual and countertactual token generation

Prompt: What is your favorite color?' Prompt: What is your favorite color?
Response: My favorite color is blue” Response: My favorite color is green.

It is the color of the sea. It is the color of the trees.

Factual generation Counterfactual generation



Factual and counterfactual worlds



Factual and counterfactual worlds

Prompt: Generate a fictional employee.
Response:



Factual and counterfactual worlds

Prompt: Generate a fictional employee.
Response: Jamie is a 28-year old man
working as a software engineer.



Factual and counterfactual worlds

Prompt: Generate a fictional employee.
Response: Jamie is a 28-year old man
working as a software engineer.

Factual world



Factual and counterfactual worlds

Prompt: Generate a fictional employe
Response: Jamie is a 28-year old maM
working as a software engineer.

Factual world



Factual and counterfactual worlds

Prompt: Generate a fictional employee.
Response: Jamie is a 28-year old woman

Prompt: Generate a fictional employe
Response: Jamie is a 28-year old maM
working as a software engineer.

Factual world



Factual and counterfactual worlds

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a software engineer.

Prompt: Generate a fictional employe
Response: Jamie is a 28-year old maM
working as a software engineer.

Counterfactual world

Factual world



Factual and counterfactual worlds

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a software engineer.

Prompt: Generate a fictional employe
Response: Jamie is a 28-year old maM
working as a software engineer.

Counterfactual world

Factual world



Factual and counterfactual worlds

Prompt: Generate a fictional employe
Response: Jamie is a 28-year old maM
working as a software engineer.

Factual world

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a software engineer.

Counterfactual world

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a nurse.

Another counterfactual world...



Factual and counterfactual worlds

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a software engineer.

Prompt: Generate a fictional employe
Response: Jamie is a 28-year old maM
working as a software engineer.

Counterfactual world

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a nurse.

Factual world

Another counterfactual world...

o0
-

Performing this type of analysis
is not possible with vanilla
implementations of LLMs...




Factual and counterfactual worlds

Prompt: Generate a fictional employe
Response: Jamie is a 28-year old maM

working as a software engineer.
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Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a software engineer.

Counterfactual world

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a nurse.

Another counterfactual world...

Q‘.’D
We we will see a method based
on structural causal models that

makes it possible
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Implementing the sampler as a Gumbel-max SCM

I; = f7(D;, U)
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Gumbel-Max T o
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ocean. Sl(y Sea. trees.

Oberst and Sontag. " Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models" ICML, 2019.
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Oberst and Sontag. " Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models" ICML, 2019.
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Initial dialog sequence Partial dialog sequence Partial dialog sequence
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Response: Response: My Response: My favorite

Partial dialog sequence Final dialog sequence
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Finding out what the LLM "would have said”

Partial dialog sequence Final dialog sequence
Prompt: What is your favorite color? > > Prompt: What is your favorite color?
Response: My favorite color is green. —1 — Response: My favorite color is green.

N————— e o o N——

N—) ) It is the color of the trees.



Implementation & experiments

it .

Ministral 8B-Instruct Llama 3 8B-Instruct

Open-weights models, small, fine-tuned for dialog
® https://docs.mistral.ai/
® https://www.llama.com/
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Prompt: Tell me a fantasy story about a captain. The
story should have either a happy or a sad ending.
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Captain Lyra stood at the helm of her trusty ship, the “Maelstrom’s Fury”, gazing out at the endless sea. For years, she had
sailed the seven seas, seeking the legendary Golden Isle, said to grant a single wish to whoever found it. After a lifetime of
searching, Lyra finally spotted the island on the horizon. As she stepped foot on its sandy shores, a warm glow enveloped
her. Before her, a chest overflowing with glittering gold and jewels lay at her feet. Lyra's heart soared as she reached for the
treasure. But, as she touched the gold, the isle began to fade away, leaving her with nothing but a whispered promise: “The
true treasure was the journey, not the gold.” Lyra's eyes welled up with tears as she realized the bitter truth — she had
sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself. The “Maelstrom'’s Fury” sailed
away, a lonely shadow on the vast ocean, carrying a captain forever haunted by the what-ifs.

Factual story
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Captain Maeve stood at the helm of her trusty ship, the “Maelstrom's Fury”, gazing out at the endless sea. For years, she
had sailed the seven seas, seeking the legendary Golden Isle, said to grant a single wish to whoever found it. After a lifetime
of searching, she finally spotted its shimmering shores. As she stepped onto the island, a radiant light enveloped her, and
she wished for her lost love, the brave sailor, Eomon, to return to her. Suddenly, Eomon emerged from the mist, frail but alive.
Overjoyed, Maeve scooped him into her arms, and they shared a tender kiss as the sun dipped into the horizon, their love

reunited at last.

Counterfactual story
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Do the LLMs show signs of bias?

® \\We ask LLMs to generate fictional &
census data

Intervention on sex

® Each individual has a list of features: 15 i
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<
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Females would have had a higher
income had they been males!






