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We think of counterfactuals all the time

Roese. “Counterfactual thinking.” Psychological bulletin, 1997.
Byrne. " Counterfactual thought.” Annual review of psychology, 2016.
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Roese. “Counterfactual thinking.” Psychological bulletin, 1997.
Byrne. " Counterfactual thought.” Annual review of psychology, 2016.
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Upward & downward countertactuals

~ollowing a (typically) bad event, we tend to think in terms of counterfactuals that coula

nave led to a or worse outcome.

Sanna & Turley. “Antecedents to spontaneous counterfactual thinking: effects of expectancy violation
and outcome valence.” Personality and Social Psychology Bulletin, 1996.
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Upward & downward countertactuals

~ollowing a (typically) bad event, we tend to think in terms of counterfactuals that coula

nave led to a or worse outcome.

| could have won
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Upward & downward countertactuals

~ollowing a (typically) bad event, we tend to think in terms of counterfactuals that coula

nave led to a or worse outcome.

| could have won | could have lost faster

Sanna & Turley. “Antecedents to spontaneous counterfactual thinking: effects of expectancy violation
and outcome valence.” Personality and Social Psychology Bulletin, 1996.
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Downward countertactuals lead to positive emotions
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Downward countertactuals lead to positive emotions

Tourists who survived the 2004 tsunami were found to think 10 times more frequently
about downward counterfactuals rather than upward.

| was unlucky. | could | was lucky. | could have

have come a week earlier. been severely injured.

Teigen & Jensen. "Unlucky victims or lucky survivors?" European Psychologist, 2010.
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Upward counterfactuals lead to negative emotions

Medvec et al. “When less is more: counterfactual thinking and satisfaction among Olympic medalists.” Journal of personality and social psychology, 1995.



Upward counterfactuals lead to negative emotions

Silver medalists showed decreased happiness levels when finding out they had been
second compared to bronze medalists when finding out they had been third.

| could have been first | could have lost the medal

Medvec et al. “When less is more: counterfactual thinking and satisfaction among Olympic medalists.” Journal of personality and social psychology, 1995.
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Silver medalists showed decreased happiness levels when finding out they had been
second compared to bronze medalists when finding out they had been third.

| could have been first | could have lost the medal

Medvec et al. “When less is more: counterfactual thinking and satisfaction among Olympic medalists.” Journal of personality and social psychology, 1995.

McMullen & Markman. "Downward counterfactuals and motivation: The wake-up call and the Pangloss effect." Personality and Social
Psychology Bulletin, 2000



Formation of intentions

Reports of protessional pilots after near-miss accidents were found to contain statements about
upward counterfactuals followed by statements about future intentions and plans.

Morris & Moore. “The lessons we (don’t) learn: counterfactual thinking and organizational accountability after a close call.”
Administrative Science Quarterly, 2000.



Formation of intentions

Reports of protessional pilots after near-miss accidents were found to contain statements about
upward counterfactuals followed by statements about future intentions and plans.

If | had understood the controller’'s words, |
wouldn't have initiated the landing attempt

Morris & Moore. “The lessons we (don’t) learn: counterfactual thinking and organizational accountability after a close call.”
Administrative Science Quarterly, 2000.
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Reports of professional pilots after near-miss accidents were found to contain statements about
upward counterfactuals followed by statements about future intentions and plans.

— <
If | had understood the controller's words, | From now on, when | am given verbal instructions by a
wouldn't have initiated the landing attempt controller, | will always repeat the instructions back to be sure

Upward

Problem Intention Behavior
counterfactual

Morris & Moore. “The lessons we (don’t) learn: counterfactual thinking and organizational accountability after a close call.”
Administrative Science Quarterly, 2000.

Epstude & Roese. “The functional theory of counterfactual thinking.” Personality and social psychology review, 2008.
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Causality and explanation

Counterfactual thoughts, causal judgments and explanations ot individual events have
been tightly linked for many years in philosophy and psychology.

Lewis. “Causation.” J. Philos., 1973.

Hilton. “Conversational processes and causal explanation.” Psychological Bulletin, 1990.

Woodward. “Making things happen: A theory of causal explanation.” Oxtord University Press, 2003.
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Causality and explanation

Counterfactual thoughts, causal judgments and explanations ot individual events have
been tightly linked for many years in philosophy and psychology.

Had | not missed the bus,

Why were you late this morning? Because | missed the bus .
| would have been on time

Explanation = Identification of causes + Communication

Lewis. “Causation.” J. Philos., 1973.
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Counterfactual thoughts, causal judgments and explanations ot individual events have
been tightly linked for many years in philosophy and psychology.
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Lewis. “Causation.” J. Philos., 1973.

Hilton. “Conversational processes and causal explanation.” Psychological Bulletin, 1990.
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Hart and Honoré. “Causation in the Law”. Oxford University Press, 1985.

Lagnado et al. "Causal responsibility and counterfactuals." Cognitive science, 2013.

or lawyers to use “but for” arguments to determine a defendant’s

ne outcome.
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Responsibility and blame

't iIs common practice
responsibility by estab

Are causality, responsibility,
and blame all the same thing?

or lawyers to use “but for” arguments to determine a defendant’s

ishing a causal relationship between their actions and the outcome.

a patient, people ho
doctor more responsib

Hart and Honoré. “Causation in the Law”. Oxford University Press, 1985.

Lagnado et al. "Causal responsibility and counterfactuals." Cognitive science, 2013.

Malle et al. “A theory of blame.”

Psychological Inquiry, 2014.

Alicke et al. "Culpable control and counterfactual reasoning in the psychology of blame." Personality and Social Psychology Bulletin, 2008.
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Kahneman and Miller. "Norm theory: Comparing reality to its alternatives." Psychological review, 1986.
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How? Mental simulation

Roese. “Counterfactual thinking.” Psychological bulletin, 1997.
Byrne. " Counterfactual thought.” Annual review of psychology, 2016.
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Mental simulation

“If the organism carries a "small-scale model" of external
reality and of its own possible actions within its head, it is
able to try out various alternatives, conclude which is the
best of them, react to future situations before they

1

arise, ... .
Craik (1943) The nature of explanation.
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14. The simulation heuristic

Daniel Kahneman and Amos Tversky

Our original treatment of the availability heuristic (Tversky & Kahneman,
1973, 11) discussed two classes of mental operations that “bring things to
mind”: the retrieval of instances and the construction of examples or
scenarios. Recall and construction are quite different ways of bringing
things to mind; they are used to answer different questions, and they
follow different rules. Past research has dealt mainly with the retrieval of
instances from memory, and the process of mental construction has been
relatively neglected.

To advance the study of availability for construction, we now sketch a
mental operation that we label the simulation heuristic. Our starting point
is a common introspection: There appear to be many situations in which
questions about events are answered by an operation that resembles the
running of a simulation model. The simulation can be constrained and
controlled in several ways: The starting conditions for a “run” can be left
at their realistic default values or modified to assume some special
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Mental machinery and operations

Smith et al. “Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.
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Smith et al. ”Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.
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Mental machinery and operations
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Smith et al. “Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.
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Goals of mental simulation

Smith et al. “Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.
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Predict what will happen

Smith et al. “Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.



Goals of mental simulation

Infer what happened

Predict what will happen

Smith et al. “Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.



Goals of mental simulation

Explain why something happened

Smith et al. “Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.



Goals of mental simulation

Explain why something happened

counterfactual

Smith et al. “Probabilistic models of physical reasoning.” In Bayesian Models of Cognition: Reverse Engineering the Mind, MIT Press, 2025.
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Counterfactual simulation in causal cognition

Tobias Gerstenberg @ '*

How do people make causal judgments and assign responsibility? In this review ar-
ticle, | argue that counterfactual simulations are key. To simulate counterfactuals,
we need three ingredients: a generative mental model of the world, the ability to per-
form interventions on that model, and the capacity to simulate the consequences of
these interventions. The counterfactual simulation model (CSM) uses these ingredi-
ents to capture people’s intuitive understanding of the physical and social world. In
the physical domain, the CSM predicts people’s causal judgments about dynamic
collision events, complex situations that involve multiple causes, omissions as
causes, and causes that sustain physical stability. In the social domain, the CSM
predicts responsibility judgments in helping and hindering scenarios.

Highlights

People judge causation and attribute re-
sponsibility by simulating counterfactual
altematives.

The counterfactual simulation model
(CSM) captures people’s causal judg-
ments about physical events and re-
sponsibility judgments about social
events.

In the physical domain, the CSM pre-



Deep dive:
Counterfactual simulation for causal judgments

Gerstenberg et al. "A counterfactual simulation model of causal judgments for physical events." Psychological review, 2021.
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Counterftactual Simulation Model

Generative model

probabilistic program

//Define table with walls

function createTable(wall.x,wall.y,wall.length,wall.width){...}
//Define balls

function createBalls(x.position,y.position,x.velocity,y.velocity¥{...}

//Define world

function createWorld(table, ball1, ball2){
createTable(...);
createBalls(...);
return(world)

}

Chater and Oakstord. "Programs as causal models: Speculations on mental programs and mental representation." Cognitive science, 2013.

Goodman et al. “Concepts in a probabilistic language of thought.” In The Conceptual Mind: New Directions in the Study ot Concepts, MIT Press, 2015.



Counterftactual Simulation Model

Generative model Counterfactual intervention

probabilistic program remove (object) operator

//Define table with walls

function createTable(wall.x,wall.y,wall.length,wall.width){...}
//Define balls

function createBalls(x.position,y.position,x.velocity,y.velocity¥{...}

//Define world

function createWorld(table, ball1, ball2){
createTable(...);
createBalls(...);
return(world)

}

Chater and Oakstord. "Programs as causal models: Speculations on mental programs and mental representation." Cognitive science, 2013.

Goodman et al. “Concepts in a probabilistic language of thought.” In The Conceptual Mind: New Directions in the Study ot Concepts, MIT Press, 2015.
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Deep dive:
Counterfactual simulation for responsibility judgments

Wu et al. "A computational model of responsibility judgments from counterfactual simulations and intention inferences." CogSci, 2023.
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Watch Clip 2



time left:

I 3

&

result:

. SUCCESS
@

How responsible was the blue for the red's success?

not at all very much
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person inference
Bayesian inverse planning

@ level-0 red plans around obstacles to reach the star

level-2 red plans around level-1 blue to
reach the star

@ level-3 blue plans to help or deceive a level-2 red
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Counterfactual simulation & intuitive psychology

Judging whether someone helped or hindered requires
counterfactual simulation




Counterfactual simulation & intuitive psychology

Judging whether someone helped or hindered requires
countertfactual simulation

generatveplanner Responsibility judgments are sensitive to the agent's
/ causal role and their inferred mental states

i

causal attribution person inference
counterfactual simulation ian i

N/

responsibility judgments
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trolley dilemma



Are counterfactuals relevant for Al?

trolley dilemma
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It makes no difference whether the Al acts
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action

Saving someone is good but killing someone is really bad
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Causal machine learning

The amount of work at the interface of causality and machine learning, often
referred to as causal machine learning, has been increasing very rapidly.

Kaddour et al. “Causal machine learning: A survey and open problems.” arXiv preprint, 2022.
Peters et al. “Elements of causal inference: foundations and learning algorithms.” The MIT Press, 2017.



Causal machine learning

The amount of work at the interface of causality and machine learning, often
referred to as causal machine learning, has been increasing very rapidly.

Causal machine learning operationalizes causal (counterfactual) reasoning about

the outputs of machine learning models,
the data used by these models, and
the users of these models

using the theoretical framework of structural causal models (SCMs).

Kaddour et al. “Causal machine learning: A survey and open problems.” arXiv preprint, 2022.
Peters et al. “Elements of causal inference: foundations and learning algorithms.” The MIT Press, 2017.



Structural Causal Models (SCMs)

Given a set of random variables X = {X;,...,X }, a SCM defines a complete
data-generating process via a collection of assignments

Xi ::.fi(PAia Ui):

where PA; C X\X. are the direct causes ot X,

U={U,,...,U,} are jointly independent noise variables
F={f,,....f,} are deterministic causal mechanisms, and

P(U) denotes the (prior) distribution of the noise variables.

Pearl. “Causality.” Cambridge university press, 2009.
Peters et al. “Elements of causal inference: foundations and learning algorithms.” The MIT Press, 2017.



What kind of (causal) questions can we answer with SCMs?
(1) Observational, (2) Interventional and (3) Countertactual Queries

Causal Graph ‘ e-‘
A1

Rare condition

.—> T ‘. B - Blindness

Treatment

Structural Causal Model .Z
I':'=Uy

B:=T -Ug+({(-=T)-(1—=Up)
Uy ~ Ber(0.01), U; ~ Ber(0.5)

Example adapted from Elements of causal inference, MIT Press, 2017
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Uy ~ Ber(0.01), U, ~ Ber(0.5)

Example adapted from Elements of causal inference, MIT Press, 2017
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(1) Observational, (2) Interventional and (3) Counterfactual Queries
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T :=U; What will happen to the patient?
“observe”

B:=T-Ug+(1-T)-(1 =-Up) ————» he patient will get blind (B = 1) with prob. 0.5
Uy ~ Ber(0.01), U, ~ Ber(0.5)

Example adapted from Elements of causal inference, MIT Press, 2017
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Uz ~ Ber(0.01), U, ~ Ber(0.5) Formally, 1)=0.5

Example adapted from Elements of causal inference, MIT Press, 2017



What kind of (causal) questions can we answer with SCMs?

(1) Observational, (2) Interventional and (3) Counterfactual Queries

M

Causal Graph

' @
- -
‘ N Rare condition
aD
8
.—V ] ————p [ G- Blindness
A
Treat.ment
Structural Causal Model Interventional question
T:= U, What will happen to the patient if a doctor breaks

the robot and always administers the treatment?
B:=T -Ug+({(-=T)-(1—=Up)

Uy ~ Ber(0.01), U, ~ Ber(0.5)

Example adapted from Elements of causal inference, MIT Press, 2017
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What kind of (causal) questions can we answer with SCMs?

(1) Observational, (2) Interventional and (3) Counterfactual Queries
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Structural Causal Model Interventional question
N T:=1 What will happen to the patient if a doctor breaks
"do” the robot and always administers the treatment?
B:=T -Ug+({(-T)-(1-Up) —\
U, ~ Ber(0.01), M he patient will get blind (B = 1) with prob. 0.01

Formally, P ~7(B = 1) = 0.01

Example adapted from Elements of causal inference, MIT Press, 2017



What kind of (causal) questions can we answer with SCMs?

(1) Observational, (2) Interventional and (3) Counterfactual Queries

M

Causal Graph

" @
- -
: Y Rare condition
aD
Iz
.—V T — B ueenen-- Blindness
A
Treatment
Structural Causal Model .Z Counterfactual question
T:= U, The treatment was administered and the patient

got blind. What would have happened it the

B:=T-Ug+(=1)-(1=Up) treatment had not been administered?

Uy ~ Ber(0.01), U, ~ Ber(0.5)

Example adapted from Elements of causal inference, MIT Press, 2017



What kind of (causal) questions can we answer with SCMs?

(1) Observational, (2) Interventional and (3) Counterfactual Queries

Causal Graph e-‘
- -
s Y Rare condition
aD
Iz
.—V T — B ueenen-- Blindness
A
Treat.ment
Modified Structural Causal Model /Z;_, 5_, Counterfactual question
T:=1 The treatment was administered and the patient

got blind. What would have happened if the
treatment had not been administered?

B =T

: Posterior distribution
Ug = 1 with prob. 1 «====""" o

Example adapted from Elements of causal inference, MIT Press, 2017



What kind of (causal) questions can we answer with SCMs?

(1) Observational, (2) Interventional and (3) Counterfactual Queries

Causal Graph

)

o |

I::: |

i

.—> T —E———V b e Blindness |

n |

Treat.ment ’ | ‘
Modified Structural Causal Model /Z;_, 5_, Counterfactual question
x T:=0 The treatment was administered and the patient
“imagine” got blind. What would have happened it the

B.=T .
treatment had not been administered?
U, = 1 with prob. 1 _ , ,
b P he patient would not have gotten blind (B = 0)
Example adapted from Elements of causal inference, MIT Press, 2017 :orma”yl P% | 7=1, B=1 ;dO(Tzl)(B — 1) — ()




The ladder of causation

(1) Observational, (2) Interventional and (3) Counterfactual Queries

The treatment was administered and the patient
got blind. What would have happened if the
treatment had not been administered?

What will happen to the patient
it a doctor breaks the robot and always
administers the treatment?

What will happen to the patient?

't is called ladder of causation because questions at level i € {1,2,3} can only be answered

it information from level j > i is available. Counterfactuals sit at the top of the ladder!

Pearl. “Causality.” Cambridge university press, 2009.
Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference.” Probabilistic and causal inference: the works of Judea Pearl, 2022.



dentifiability

|dentification of
an interventional probability, e.g., Pﬂ;dO(Tzl)(B), or
a counterfactual probability, e.g., P#11=1.B=1:doI=1)(py

refers to the process of estimating it using (observational) data from /.

Shpitser and Pearl. “Complete identification methods for the causal hierarchy.” JMLR, 2008.

Perkovic et al. “Complete graphical characterization and construction of adjustment sets in markov equivalence classes of ancestral graphs.” JMLR, 2018.
Shalit et al. “Estimating individual treatment effect: generalization bounds and algorithms.” ICML, 2017.
Kallus. “ Treatment effect risk: Bounds and inference.” Management Science, 2023.



dentifiability

| dentification of
an interventional probability, e.g., P#:9°U=1(B), or
a counterfactual probability, e.g., P#11=1.B=1:doI=1)(py
refers to the process of estimating it using (observational) data from /.

It an interventional or countertactual probability is not identitiable, then regardless ot how much
data we have, we will not be able to estimate it.

Shpitser and Pearl. “Complete identification methods for the causal hierarchy.” JMLR, 2008.

Perkovic et al. “Complete graphical characterization and construction of adjustment sets in markov equivalence classes of ancestral graphs.” JMLR, 2018.
Shalit et al. “Estimating individual treatment effect: generalization bounds and algorithms.” ICML, 2017.
Kallus. “ Treatment effect risk: Bounds and inference.” Management Science, 2023.



dentifiability

|dentification of

an interventional probability, e.g., Pﬂ;dO(Tzl)(B), or

a counterfactual probability, e.g., P#11=1.B=1:doI=1)(py

refers to the process of estimating it using (observational) data from /.

It an interventional or countertactual probability is not identitiable, then regardless ot how much
data we have, we will not be able to estimate it.

here exist methods to

(i) determine the identitiability of specific interventional and countertactual probabilities, and
(ii) estimate (or bound) quantities derived from these probabilities (e.g., individual treatment eftects)

Shpitser and Pearl. “Complete identification methods for the causal hierarchy.” JMLR, 2008.

Perkovic et al. “Complete graphical characterization and construction of adjustment sets in markov equivalence classes of ancestral graphs.” JMLR, 2018.
Shalit et al. “Estimating individual treatment effect: generalization bounds and algorithms.” ICML, 2017.
Kallus. “ Treatment effect risk: Bounds and inference.” Management Science, 2023.



Use cases of countertactuals in machine learning

Classitication Interpretability
Fairness

Decision making Harm
Calibration
Assistance

Reinforcement learning =% Training



Use cases of countertactuals in machine learning

Classitfication Interpretability



Countertfactual explanations

The term counterfactual has arguably become mainstream in the field of machine learning
after the seminal work on counterfactual explanations by Wachter et al.

Wachter et al. “Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

The term counterfactual has arguably become mainstream in the field of machine learning
after the seminal work on counterfactual explanations by Wachter et al.
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Wachter et al. “Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

The term counterfactual has arguably become mainstream in the field of machine learning
after the seminal work on counterfactual explanations by Wachter et al.
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Wachter et al. “Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

The term counterfactual has arguably become mainstream in the field of machine learning
after the seminal work on counterfactual explanations by Wachter et al.
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Wachter et al. “Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

The term counterfactual has arguably become mainstream in the field of machine learning
after the seminal work on counterfactual explanations by Wachter et al.
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Wachter et al. " Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

The term counterfactual has arguably become mainstream in the field of machine learning
after the seminal work on counterfactual explanations by Wachter et al.
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It your income had Bank ML

been 5,000€ higher...

Wachter et al. " Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

Given a (binary) prediction h(x) by a machine learning model about an individual with features x,

a countertactual explanation is given by the closest tfeature value x" under which h(x’) # h(x)

Loan denied

=0 ff

Loan granted

hix) =1

Wachter et al. “Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

Given a (binary) prediction h(x) by a machine learning model about an individual with features x,

a countertactual explanation is given by the closest tfeature value x" under which h(x’) # h(x)

Loan granted

hix) =1

Loan denied 4

hx =0

By showing a feature-perturbed version of an individual, a counterfactual explanations is,
in principle, telling the individual what to do to secure a better decision in the future.

Wachter et al. “Counterfactual explanations without opening the black box: Automated decisions and the GDPR.” Harv. JL & Tech., 2017.



Countertfactual explanations

owever, the closest feature value x” may not be actionable, and may not even be plausible.

Verma et al. "Counterfactual explanations and algorithmic recourses for machine learning: A review." ACM Computing Surveys, 2024.



Countertfactual explanations

owever, the closest feature value x” may not be actionable, and may not even be plausible.
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Verma et al. "Counterfactual explanations and algorithmic recourses for machine learning: A review." ACM Computing Surveys, 2024.



Countertfactual explanations

owever, the closest feature value x” may not be actionable, and may not even be plausible.

o A
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It you had been 5 Bank ML

years younger...

Many follow-up works have addressed this problem by finding the closest feature value
subject to a variety of actionability and plausibility constraints.

Verma et al. "Counterfactual explanations and algorithmic recourses for machine learning: A review." ACM Computing Surveys, 2024.



Counterfactual explanations ignore causal dependencies
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Beckers. “Causal explanations and xai.” ClLeaR, 2022.
Crupi et al. "Counterfactual explanations as interventions in latent space.” DMKD, 2022.



Counterfactual explanations ignore causal dependencies
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Beckers. "Causal explanations and xai.” ClLeaR, 2022.
Crupi et al. "Counterfactual explanations as interventions in latent space.” DMKD, 2022.



Counterfactual explanations ignore causal dependencies
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Beckers. "Causal explanations and xai.” ClLeaR, 2022.
Crupi et al. "Counterfactual explanations as interventions in latent space.” DMKD, 2022.



Counterfactual explanations ignore causal dependencies

o A ‘

-~-2» Kate | Bank ML
It your income had

been 5,000€ higher...

Income: 55,000€ \
Savings: 6,000€ |
, Debt: 450€

/ Income: 50,000€ \
Savings: 6,000€ |
Debt: 450€

' If Kate’s income had been 5,000€ higher, Kate’s savings would have been more than 6,000€!

Beckers. "Causal explanations and xai.” ClLeaR, 2022.
Crupi et al. "Counterfactual explanations as interventions in latent space.” DMKD, 2022.



Counterfactual explanations as interventions

A countertfactual explanation does not answer a counterfactual
question but an interventional question.



Counterfactual explanations as interventions

A countertfactual explanation does not answer a counterfactual
question but an interventional question.
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A countertfactual explanation does not answer a counterfactual
question but an interventional question.
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Counterfactual explanations as interventions

A counterfactual explanation does not answer a counterfactual

question but an interventional question.

Structural Causal Model .Z Causal Graph

/

Data gen

A counterfactual explanation encourages an individual to c
that x; # x;. However, it does not take into account that suc
features x; such that x; = x;.

X1
o
o
o
o
[ )
X, — Y
eration Features Prediction

nange the value of the teatures x; such

n a change may induce changes in



Algorithmic recourse

Algorithmic recourse seeks to find the minimal intervention a under which h(x + a) # h(x)
while accounting for causal dependencies between features.

Karimi et al. "Algorithmic recourse: from counterfactual explanations to interventions.” FAccT, 2021.
Karimi et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach.” NeurlPS, 2020.



Algorithmic recourse

Algorithmic recourse seeks to find the minimal intervention a under which h(x + a) # h(x)
while accounting for causal dependencies between features.

Structural Causal Model .Z Causal Graph
X
X, = fx,(D)
¥ := h(X) X, —> Y
D ~ P(D)

Data generation Features Prediction

Karimi et al. "Algorithmic recourse: from counterfactual explanations to interventions.” FAccT, 2021.
Karimi et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach.” NeurlPS, 2020.



Algorithmic recourse

Algorithmic recourse seeks to find the minimal intervention a under which h(x + a) # h(x)
while accounting for causal dependencies between features.

Modified Structural Causal Model ./ _, Causal Graph

X
X = fXI(D)
X, := f (D) :
¥ := h(X) Xy —————> Y

D ~ P(D ‘ X — x) e _Posterior distr:ibution
of the noise

Data generation Features Prediction

Karimi et al. "Algorithmic recourse: from counterfactual explanations to interventions.” FAccT, 2021.
Karimi et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach.” NeurlPS, 2020.



Algorithmic recourse

Algorithmic recourse seeks to find the minimal intervention a under which h(x + a) # h(x)
while accounting for causal dependencies between features.

Modified Structural Causal Model ./ _, Causal Graph

X = Jfx (D) +q

X, = fx (D) + a,

VAN

,  — Y

Y := h(X)
Posterior distribution
DNP(D‘XZX) <-- of the noise

Data generation Features Prediction
' Whenever a; = 0, the value of X; may still change!
W

Karimi et al. "Algorithmic recourse: from counterfactual explanations to interventions.” FAccT, 2021.
Karimi et al. "Algorithmic recourse under imperfect causal knowledge: a probabilistic approach.” NeurlPS, 2020.



Countertactual explanations & performativity

It a sizable number of individuals follow the changes
prescribed by counterfactual explanations, the feature

distribution P(X) may change.

Tsirtsis and Gomez-Rodriguez. "Decisions, counterfactual explanations and strategic behavior." NeurlPS, 2020.
Perdomo et al. " Performative prediction." ICML, 2020.



Countertactual explanations & performativity

Chances of repayment would improve

H: d Sizable number Of indiViduals fO”OW the Changes for |arge part of the population
prescribed by counterfactual explanations, the feature
. . . 0.10
distribution P(X) may change. ol
0.08
EO?M
! 0.856 .06
L
E 0,836 0.04
=
0.02
0921 [Positive decision: 62%}
0.00

0.018 0.764 0.856 0.886 0.921
Final P(y = 1| )

More people would
receive credit

Tsirtsis and Gomez-Rodriguez. "Decisions, counterfactual explanations and strategic behavior." NeurlPS, 2020.
Perdomo et al. " Performative prediction." ICML, 2020.



Countertactual explanations & performativity

Chances of repayment would improve

It a sizable number of individuals follow the changes for large part of the population
prescribed by counterfactual explanations, the feature
distribution P(X) may change. ol o
< 0.764 0-08
This raises the question of finding decision policies x 5'{30-856 o
and counterfactual explanations & that are optimal in £ 0856 o
terms of utility. : . 0.02
Positive decision: 62% | I
0.00

. 0.018 0.764 0.856 0.886 0.921
Final P(y = 1| )

max M(JZ', &27) .= —x~P(X | 7,9f) :ﬂ(x)<P(Y: 1 ‘x) o 7)

i, T

constant reflecting economic considerations More P60p|e would
of the decision maker receive credit

Tsirtsis and Gomez-Rodriguez. "Decisions, counterfactual explanations and strategic behavior." NeurlPS, 2020.
Perdomo et al. " Performative prediction." ICML, 2020.



Use cases of countertactuals in machine learning

Classification

Fairness




Counterfactual fairness

Counterfactual fairness captures the intuition that a prediction by a machine learning model is
fair towards an individual who belongs to a demographic group A = a it it would have been

the same had the individual belonged to a different demographic group A = a’

Kusner et al. “Counterfactual fairness.” NeurlPS, 2017.



Counterfactual fairness

Counterfactual fairness captures the intuition that a prediction by a machine learning model is
fair towards an individual who belongs to a demographic group A = a it it would have been

the same had the individual belonged to a different demographic group A = a’
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Counterfactual fairness can be too restrictive

Counterfactual fairness considers the full effect of the demographic group on the prediction
as problematic. However, this is not the case in certain scenarios.

Chiappa. ” Path-specific counterfactual fairness.” AAAI, 2019.
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as problematic. However, this is not the case in certain scenarios.
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8,442 male applicants for the fall ot 1973, 44 percent were admitted,

o 4,351 female applicants, 35 percent were admitted
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Path-specific counterfactual fairness

Path-specific counterfactual fairness is a more fine-grained fairness criterion that deals with sensitive
attributes aftecting the prediction along both fair and untfair pathways.
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Unfair (path)
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Fair
Department Admission

Gender . . .
choice Decision

Chiappa. ” Path-specific counterfactual fairness.” AAAI, 2019.



Use cases of countertactuals in machine learning
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Treatment A

Disease

50% mortality rate , S

Treatment B

Treatments A and B have identical recovery rates.

60% chance of 40% chance of
curing a patient having no effect
80% chance of 20% chance of
curing a patient killing a patient

owever, doctors would systematically favor treatment A

as it achieves the same recovery rate but never harms the patient.

they not been treated.

$ Under treatment A, there are no patients that would have survived had they not been treated.

$ Under treatment B, there are patients who die following treatment who would have lived had



Formalizing countertactual harm
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Use cases of countertactuals in machine learning

Decision making

Calibration
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There exist instances of this decision making process in which any monotonic decision policy
based on calibrated Al predictions is suboptimal.

Corvelo Benz and Gomez-Rodriguez. “Human-aligned calibration for ai-assisted decision making.” NeurlPS, 2023.



Calibration

To make sure the level of trust the optimal decision maker needs to place on predictions is
(always) monotone on the confidence values, one can use multicalibration.

% patients who

[ a
confidence g
|

Corvelo Benz and Gomez-Rodriguez. “Human-aligned calibration for ai-assisted decision making.” NeurlPS, 2023.



Use cases of countertactuals in machine learning

Decision making

Assistance



Al-assisted counterfactuals in sequential decision making

Could John's condition have
improved, had | administered an
alternative sequence of treatments?

[ 1 i
\OC.)GN ej"‘v Joh A/‘ : E :

@) ohn :
Administers ly 4 ) 2 Iy
treatments

Alice  srsrrrrssiimsnnsscnnnnnnnnnnnnnnns > - 7 7 - 7
J 4

Tsirtsis et al. “Counterfactual Explanations in Sequential Decision Making Under Uncertainty.” NeurlPS, 2021.



Alternative sequence of treatments as counterfactuals

Current state
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Counterfactually optimal action sequences

Given the counterfactual transition probabilities S, | ~ P-#15=sA=a: do(d=a) (Sr+1) and a reward
function r(s, a), one may find alternative sequence of actions aj, ...,a;_; close to the observed
actions a, ..., ap_; that maximizes the average counterfactual reward.
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Use cases of countertactuals in machine learning

Reinforcement learning =% Training



Counterfactually-guided training in reinforcement learning

In reinforcement learning, given a transition probability P(s’| s, a) and a reward function r(s, a),
the goal is to design an action policy a := z(s) with the highest average reward, i.e.

T
T = argmax [, p [R(T)] where R(7) = Z R(s,, a,)

=1

Buesing et al. “Woulda, coulda, shoulda: Counterfactually-guided policy search.” ICLR, 2018.
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In reinforcement learning, given a transition probability P(s’| s, a) and a reward function r(s, a),
the goal is to design an action policy a := z(s) with the highest average reward, i.e.

T
n* =argmax k., p [R(T)] where R(7) = Z R(s,, a,)
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Counterfactually-guided training reters to the evaluation of the above expectation using data

gathered via an action policy z#’ # x and counterfactual reasoning
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Use cases of countertactuals in machine learning
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Can LLMs reason about counterfactuals?

Several studies have looked at the ability of large language models to provide responses to
interventional and counterfactual questions.

Jin et al. "Cladder: Assessing causal reasoning in language models." NeurlPS, 2023.
Kiciman et al. "Causal reasoning and large language models: Opening a new frontier for causality." TMLR, 2023.
Zhang et al. "What if the tv was off? examining counterfactual reasoning abilities of multi-modal language models." CVPR, 2024.
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Can LLMs reason about counterfactuals?

Several studies have looked at the ability of large language models to provide responses to
interventional and counterfactual questions.
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|

Causal Graph
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We know that rainy season causes rain and sprinkler off. Rain or sprinkler
on causes wet ground. Would the ground be wet it it was the dry season

instead of the rainy season?

S — W Overall Acc. 1 Acc. bg Rung 3
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LLaMa 44.03 48.23 29.46 52.66
Sprinkler Wet ground Alpaca 44.66 52.03 29.53 51.13
. ’ GPT-3 Non-Instr. (davinci) 49.92 50.00 49.75 50.00
Comparison of the LLM'’s GPT-3 Instr. (text-davinci-001) 5140 | 5130 52.63 50.47
. GPT-3 Instr. (text-davinci-002) 53.15 50.85 56.96 51.90
response with ground truth opPr3mse (text-davinci-003) 56.26 51.11 62.97 54.96
GPT-3.5 52.18 51.80 54.78 50.32
GPT-4 62.03 63.01 62.82 60.55
+ CAUSALCOT 70.40 83.35 67.47 62.05
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Deep dive:
Can LLMs reason about counterfactuals of their own outputs?

Chatzi et al. “Counterfactual token generation in large language models.” CLeaR, 2025.
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Autoregressive token generation

Prompt: What is your favorite color?
Response: | like pink. Do you like it

as well?

Prompt: What is your favorite color?
Response: My favorite color is blue.
It is the color of the sea.

Prompt: What is your favorite color?
Response: | don't really like colors.
Black is fine | guess...
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Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a software engineer.

Counterfactual world

Prompt: Generate a fictional employee.

Response: Jamie is a 28-year old woman
working as a nurse.

Another counterfactual world...
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makes it possible
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What token would the
sampler have chosen

in retrospect?

Sampler

D,.sample()




Implementing the sampler as a Structural Causal Model

i-th token sampled

Sea.

ocean. sky. sea. trees.




Implementing the sampler as a Structural Causal Model

i-th token sampled

w Sea.

ocean. sky. sea. trees.




Implementing the sampler as a Structural Causal Model

i-th token sampled

w Sea.

ocean. sky. sea. trees.




Implementing the sampler as a Structural Causal Model

1; = fr(D;, U)

i-th token sampled

w Sea.

ocean. sky. sea. trees.




Implementing the sampler as a Gumbel-max SCM

I; = f7(D;, U)

i-th token sampled

Gumbel-Max T o
SCM i '

ocean. Sl(y Sea. trees.

Oberst and Sontag. " Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models" ICML, 2019.
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Oberst and Sontag. " Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models" ICML, 2019.
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Initial dialog sequence Partial dialog sequence Partial dialog sequence
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Response: My favorite color is blu® ™ —1 —



Finding out what the LLM "would have said”

Partial dialog sequence

Final dialog sequence

Prompt: What is your favorite color?

. . .
Response: My favorite color is green. — S



Finding out what the LLM "would have said”

Partial dialog sequence Final dialog sequence
Prompt: What is your favorite color? > > Prompt: What is your favorite color?
Response: My favorite color is green. —1 — Response: My favorite color is green.

N————— e o o N——

N—) ) It is the color of the trees.



Implementation & experiments

it .

Ministral 8B-Instruct Llama 3 8B-Instruct

Open-weights models, small, fine-tuned for dialog
® https://docs.mistral.ai/
® https://www.llama.com/



https://docs.mistral.ai/
https://www.llama.com/

What do counterfactual stories look like?

Prompt: Tell me a fantasy story about a captain. The
story should have either a happy or a sad ending.



What do counterfactual stories look like?

Prompt: Tell me a fantasy story about a captain. The
story should have either a happy or a sad ending.

Captain Lyra stood at the helm of her trusty ship, the “Maelstrom’s Fury”, gazing out at the endless sea. For years, she had
sailed the seven seas, seeking the legendary Golden Isle, said to grant a single wish to whoever found it. After a lifetime of
searching, Lyra finally spotted the island on the horizon. As she stepped foot on its sandy shores, a warm glow enveloped
her. Before her, a chest overflowing with glittering gold and jewels lay at her feet. Lyra's heart soared as she reached for the
treasure. But, as she touched the gold, the isle began to fade away, leaving her with nothing but a whispered promise: “The
true treasure was the journey, not the gold.” Lyra's eyes welled up with tears as she realized the bitter truth — she had
sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself. The “Maelstrom'’s Fury” sailed
away, a lonely shadow on the vast ocean, carrying a captain forever haunted by the what-ifs.

Factual story
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Prompt: Tell me a fantasy story about a captain. The
story should have either a happy or a sad ending.

Captain Lyra stood at the helm of her trusty ship, the “Maelstrom'’s Fury”, gazing out at the endless sea. For years, she had
sailed the seven seas, seeking the legendary Golden Isle, said to grant a single wish to whoever found it. After a lifetime of
searching, Lyra finally spotted the island on the horizon. As she stepped foot on its sandy shores, a warm glow enveloped
her. Before her, a chest overflowing with glittering gold and jewels lay at her feet. Lyra's heart soared as she reached for the
treasure. But, as she touched the gold, the isle began to fade away, leaving her with nothing but a whispered promise: “The
true treasure was the journey, not the gold.” Lyra's eyes welled up with tears as she realized the bitter truth — she had
sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself. The “Maelstrom's Fury” sailed
away, a lonely shadow on the vast ocean, carrying a captain forever haunted by the what-ifs.

Factual story

Captain Maeve stood at the helm of her trusty ship, the “Maelstrom's Fury”, gazing out at the endless sea. For years, she
had sailed the seven seas, seeking the legendary Golden Isle, said to grant a single wish to whoever found it. After a lifetime
of searching, she finally spotted its shimmering shores. As she stepped onto the island, a radiant light enveloped her, and
she wished for her lost love, the brave sailor, Eomon, to return to her. Suddenly, Eomon emerged from the mist, frail but alive.
Overjoyed, Maeve scooped him into her arms, and they shared a tender kiss as the sun dipped into the horizon, their love

reunited at last.

Counterfactual story
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® \\We ask LLMs to generate fictional &
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Do the LLMs show signs of bias?

® \\We ask LLMs to generate fictional &
census data

Intervention on sex

® Each individual has a list of features: 15 i
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<
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® Citizenship 210 : B Male (Factual)
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o | The median income of - (Total)
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Income

Females would have had a higher
income had they been males!






Thanks for your attention!

Tobias Gerstenberg Manuel Gomez-Rodriguez Stratis Tsirtsis

gerstenberg@stanford.edu manuel@mpi-sws.org stsirtsis@mpi-sws.org
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