Learning with Temporal Point Processes 9 99 9

RL & Control

Manuel Gomez Rodriguez Max Planck Institute for Software Systems

ICML TUTORIAL, JULY 2018

Outline of the Seminar

TEMPORAL POINT PROCESSES (TPPs): INTRO

- **1. Intensity function**
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

MODELS & INFERENCE

- **1. Modeling event sequences**
- 2. Clustering event sequences
- **3. Capturing complex dynamics**
- 4. Causal reasoning on event sequences

RL & CONTROL

- 1. Marked TPPs: a new setting
- 2. Stochastic optimal control
- 3. Reinforcement learning

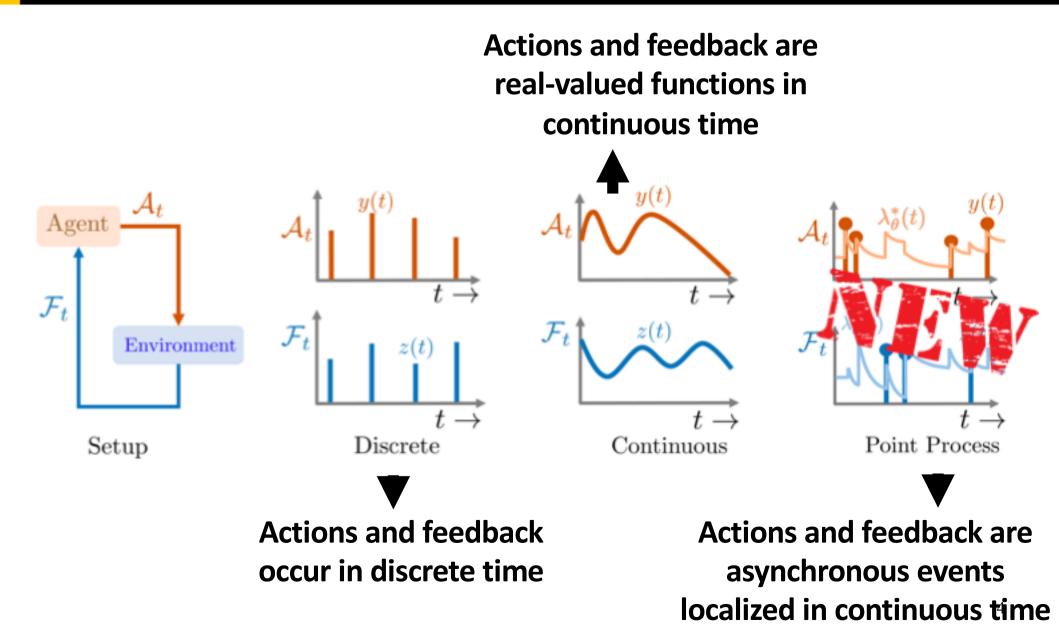
Slides/references: learning.mpi-sws.org/tpp-icml18

RL and Control

1. Marked TPP: a new setting

- 2. Stochastic optimal control
 - 3. Reinforcement learning

MTPP: a new setting for control & RL



Example I: Viral marketing

Agent

Social media user

Environment

Followers' Feed

Forbes

For Brands And PR: When Is The Best Time To Post On Social Media?

THE HUFFINGTON POST

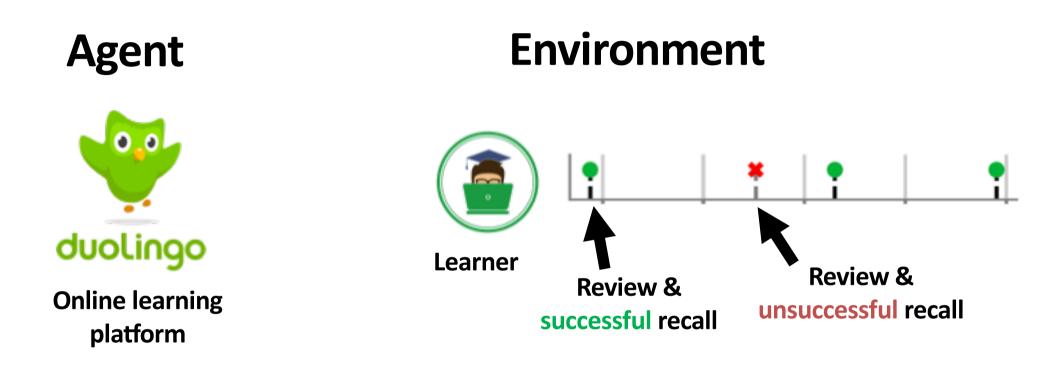
The Best Times to Post on Social Media

When to post to maximize views or likes?

 $\mu_i(t) = u(t) \blacktriangleright N_i(t)$

Design (optimal) posting intensity Marks (feedback) given by environment

Example II: Spaced repetition



When to review to maximize recall probability?

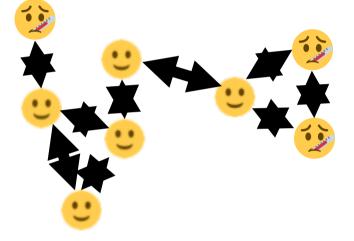
 $\lambda_i(t) \rightarrow N_i(t)$ Design (optimal) reviewing intensities

Marks

Example III: Suppressing epidemics

Health policy (Resource allocation)

Environment



Population (social network)

RL & Control

1. Marked TPP: a new setting for control

2. Stochastic optimal control

3. Reinforcement learning

Stochastic optimal control of SDEs with jumps

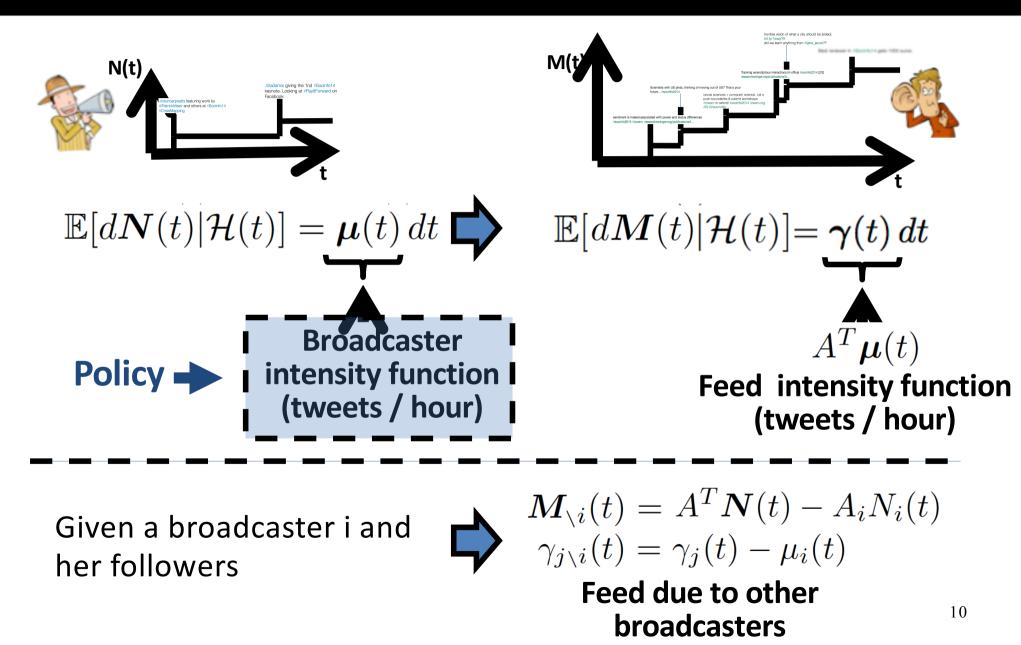
If the problem dynamics can be expressed using SDEs with jumps:

Optimal control of marked topporal
 po Next, details on one
 approach to the when to
 im et al. 2018;

Key idea:

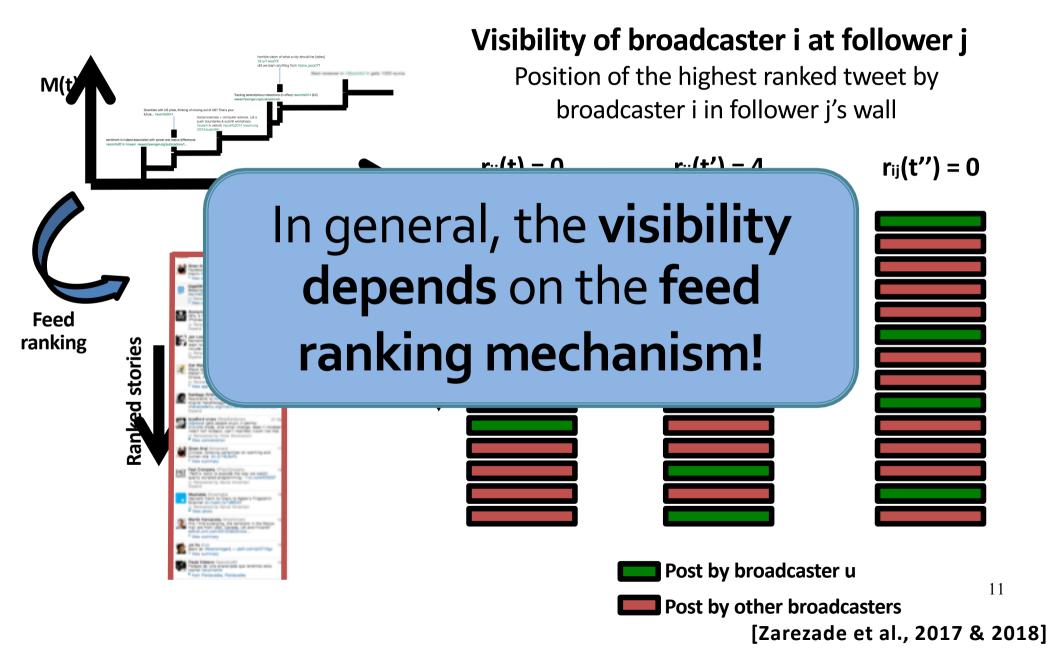
Policy is characterized by an intensity function!

Broadcasters and feeds

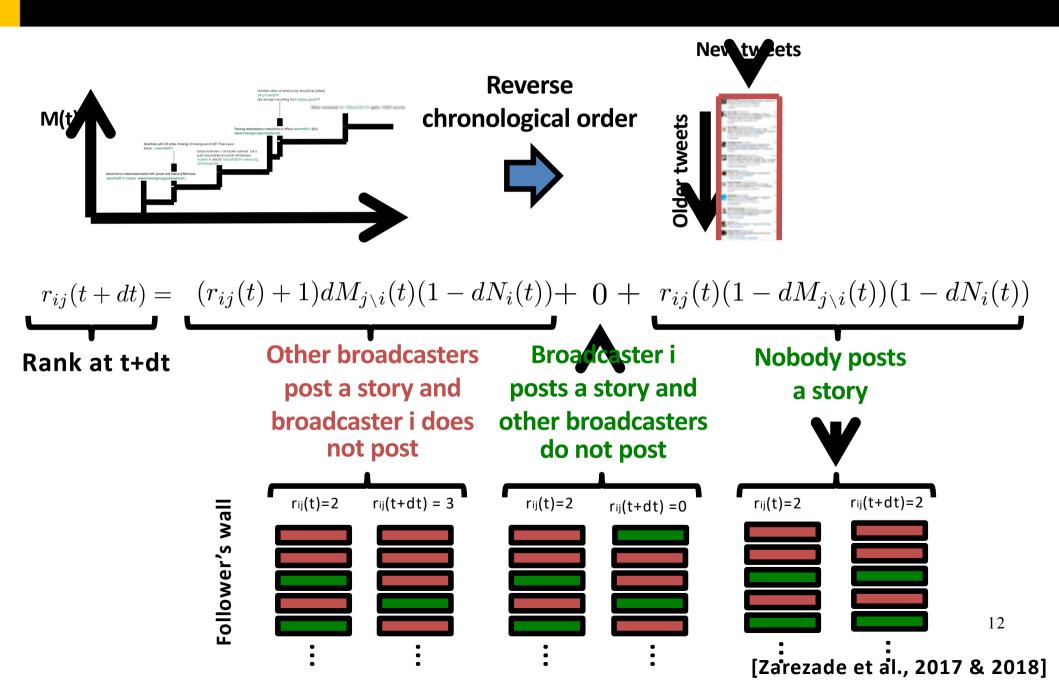


[Zarezade et al., 2017 & 2018]

Definition of visibility function



Visibility dynamics in a FIFO feed (I)



Visibility dynamics in a FIFO feed (II)

 $r_{ij}(t+dt) = (r_{ij}(t)+1)dM_{j\setminus i}(t)(1-dN_i(t)) + 0 + r_{ij}(t)(1-dM_{j\setminus i}(t))(1-dN_i(t))$ igsquare Zero-one law $dN_i(t)dM_{j\setminus i}(t)=0$ $dr_{ij}(t) = -r_{ij}(t) dN_i(t) + dM_{j \setminus i}(t)$ **Stochastic** $r_{ij}(t+dt) - r_{ij}(t)$ Broadcaster i Other broadcasters posts a story posts a story L differential equation (SDE) with jumps **OUR GOAL:** Optimize r_{ii}(t) over time, so that it is small, by controlling $dN_i(t)$ through the intensity $\mu_i(t)$

Feed dynamics

$$N_{i}(t) = M(t) \qquad \gamma_{j \setminus i}(t) = \lambda(t)$$

We consider a general intensity:

(e.g. Hawkes, inhomogeneous Poisson)

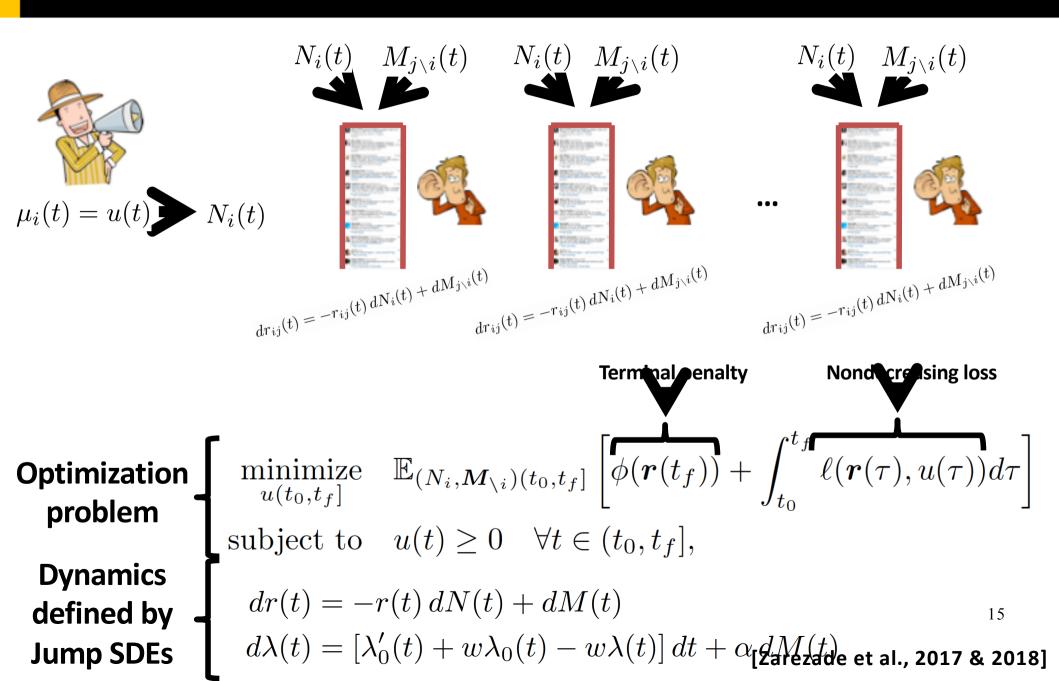
We consider a general intensity:
(e.g. Hawkes, inhomogeneous Poisson)
Jump stochastic differential equation (SDE)
$$\lambda^*(t) = \lambda_0(t) + \alpha \int_0^t g(t-s) dN(s)$$
Deterministic arbitrary intensity Stochastic self-excitation

$$\lambda^*(t) = \lambda_0(t) + \alpha \int_0^t g(t-s) dN(s)$$

$$L^*(t) = \lambda_0(t) + \alpha \int_0^t g(t-s) dN(s)$$

[Zarezade et al., 2017 & 2018]

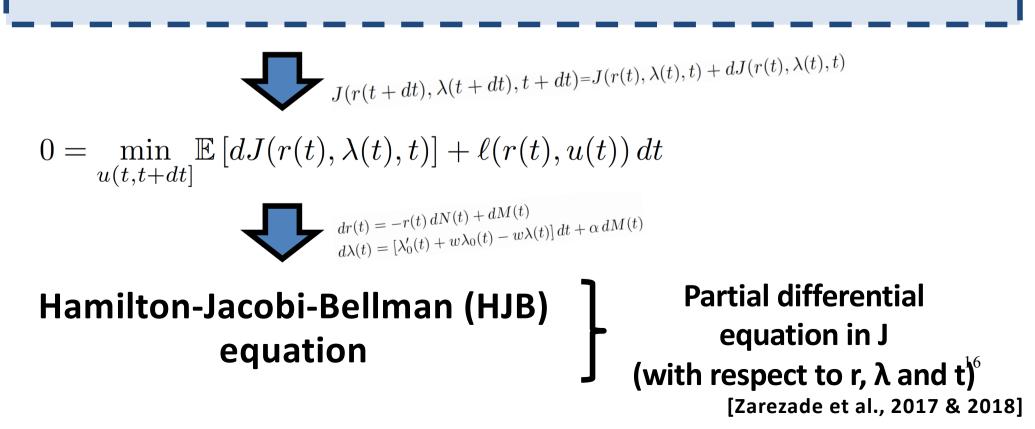
The when-to-post problem



Bellman's Principle of Optimality

Lemma. The optimal cost-to-go satisfies Bellman's Principle of Optimality

 $J(r(t), \lambda(t), t) = \min_{u(t, t+dt]} \mathbb{E}\left[J(r(t+dt), \lambda(t+dt), t+dt)\right] + \ell(r(t), u(t)) dt$



Solving the HJB equation

Consider a quadratic loss

$$\ell(r(t), u(t)) = \frac{1}{2}s(t) r^2(t) + \frac{1}{2}q u^2(t)$$
Favors some periods of times
(e.g., times in which the follower is online)
Trace-offs visibility and number

Then, it can be shown that the optimal intensity is:

$$\begin{split} u^*(t) &= q^{-1} \left[J(r(t),\lambda(t),t) - J(0,\lambda(t),t) \right] \\ &= \sqrt{s(t)/q} \, r(t) \\ & \text{it only depends on the current visibility!} \end{split}$$

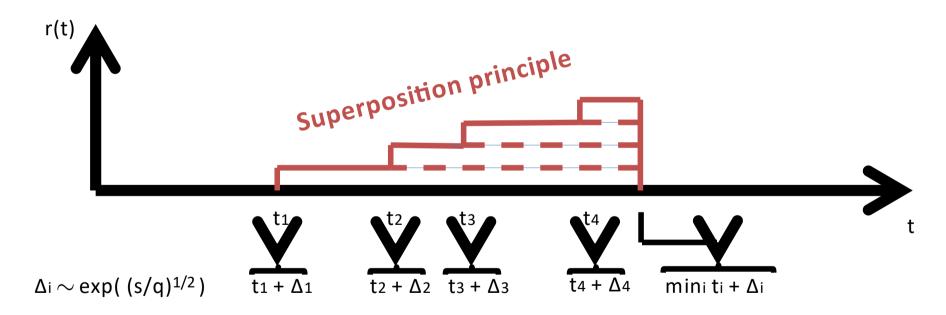
[Zarezade et al., 2017 & 2018]

17

The RedQueen algorithm

Consider s(t) = s
$$\rightarrow$$
 u*(t) = (s/q)^{1/2} r(t)

How do we sample the next time?

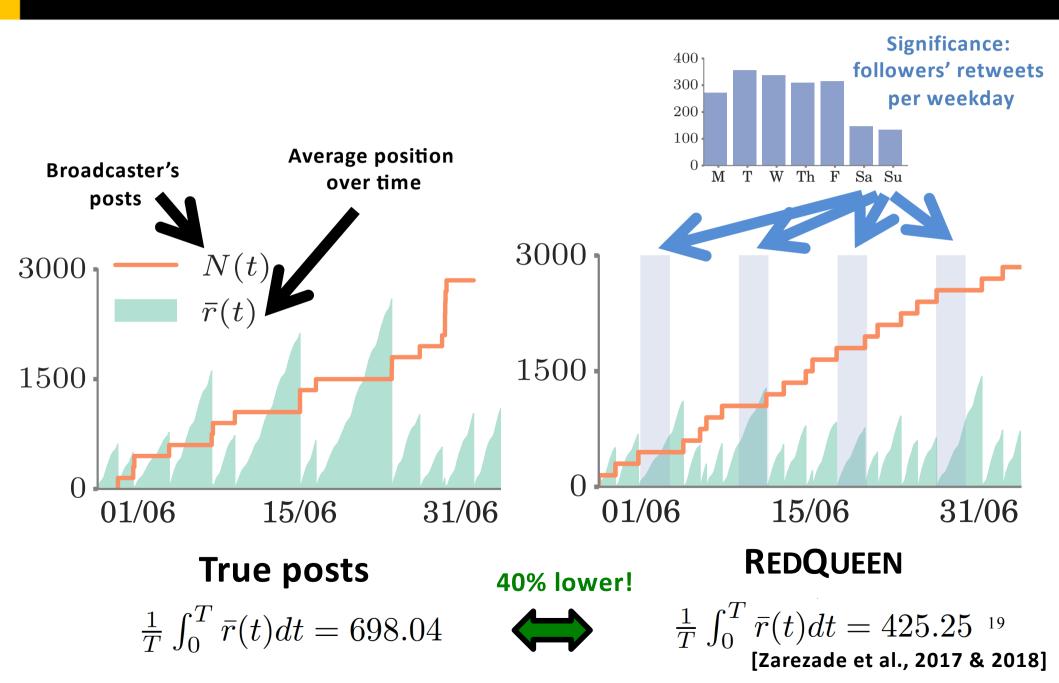


It only requires sampling M(t_f) times!

[Zarezade et al., 2017 & 2018]

18

Example: a broadcaster in Twitter



RL & Control

- 1. Marked TPP: a new setting
- 2. Stochastic optimal control
 - 3. Reinforcement learning

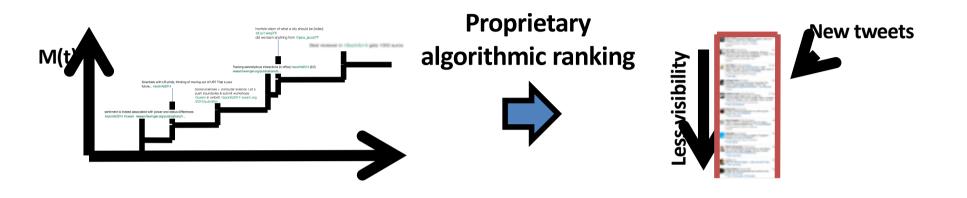
If the problem dynamics cannot be expressed using SDEs with jumps or the objective is intra

Next, details on one approach to the when/what to post problem with algorithmic ranking

Similarly as with optimal control: Policy is characterized by an intensity function!

oral

Visibility dynamics are unknown

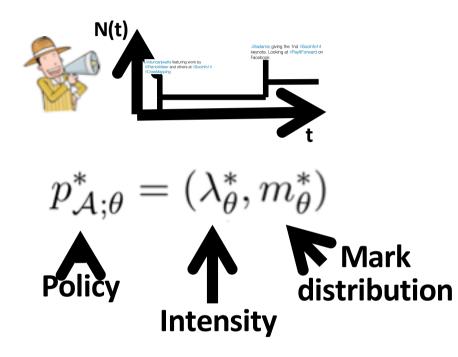


However, one may have access to quality metrics

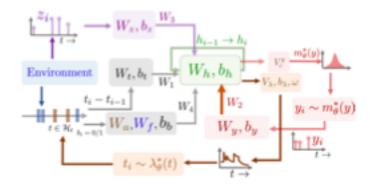
Manuel Gautreche Three days before the Imips2018 deadline, there already 888 submissions! :{	Impressions	1,096
	Total engagements	15
	Detail expands	5
Reach a bigger audience Get more engagements by promoting this Tweet	Profile clicks	4
	Likes	3
Get started	Hashtag clicks	3

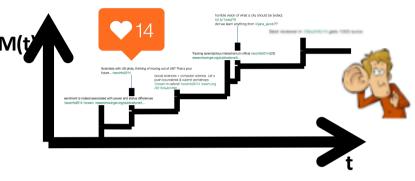
Key idea: Think of these metrics as rewards in a reinforcement learning setting!

Broadcasters and feedback



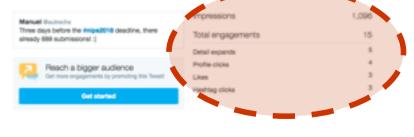
Parametrized using RNNs





 $p^*_{\mathcal{F};\phi} = (\lambda^*_{\phi}, m^*_{\phi})$

We do not know the *feedback* distribution but we can *sample* from it...



...and measure quality metrics (rewards) 23

[Upadhyay et al., 2018]

Policy gradient

We aim to maximize the average reward in a time window [0, T]: $J(\theta)$ $\max_{\substack{p_{\mathcal{A};\theta}^{*}(\cdot)}} \mathbb{E}_{\mathcal{A}_{T} \sim p_{\mathcal{A};\theta}^{*}(\cdot), \mathcal{F}_{T} \sim p_{\mathcal{F};\phi}^{*}(\cdot)} [R^{*}(T)]$

Actions and

environment are

asynchronous!

Reward

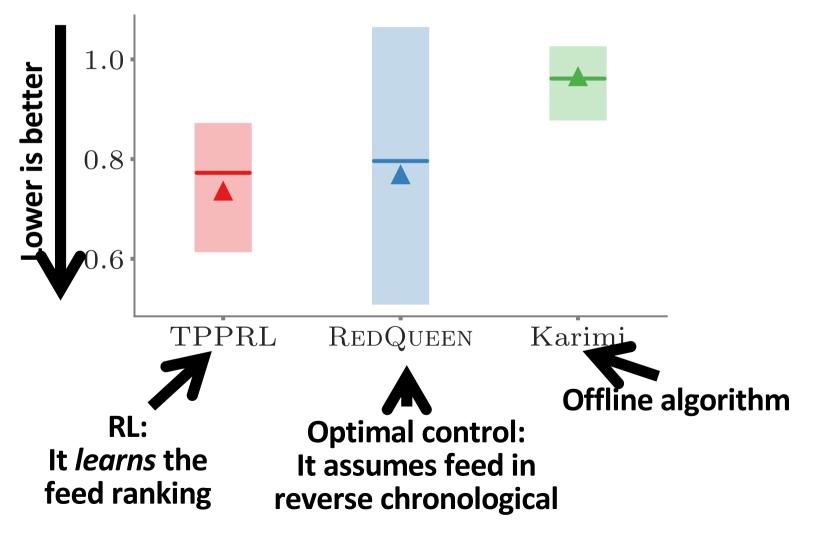
(Cumulative)

It can be shown that the reinforce trick is valid, i.e., we can compute the gradient and use SGD:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\mathcal{A}_T \sim p^*_{\mathcal{A};\theta}(\cdot), \mathcal{F}_T \sim p^*_{\mathcal{F};\phi}(\cdot)} \left[R^*(T) \nabla_{\theta} \log \mathbb{P}_{\theta}(\mathcal{A}_T) \right]$$

24

Example: 100 broadcasters in Twitter



25

Many thanks!

TEMPORAL POINT PROCESSES (TPPs): INTRO

- **1. Intensity function**
- **2.** Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

MODELS & INFERENCE

- **1. Modeling event sequences**
- 2. Clustering event sequences
- 3. Capturing complex dynamics
- 4. Causal reasoning on event sequences

RL & CONTROL

- 1. Marked TPPs: a new setting
- 2. Stochastic optimal control
- 3. Reinforcement learning