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ABSTRACT
Humans inevitably develop a sense of the relationships be-
tween objects, some of which are based on their appearance.
Some pairs of objects might be seen as being alternatives to
each other (such as two pairs of jeans), while others may
be seen as being complementary (such as a pair of jeans
and a matching shirt). This information guides many of the
choices that people make, from buying clothes to their inter-
actions with each other. We seek here to model this human
sense of the relationships between objects based on their ap-
pearance. Our approach is not based on fine-grained model-
ing of user annotations but rather on capturing the largest
dataset possible and developing a scalable method for uncov-
ering human notions of the visual relationships within. We
cast this as a network inference problem defined on graphs
of related images, and provide a large-scale dataset for the
training and evaluation of the same. The system we develop
is capable of recommending which clothes and accessories
will go well together (and which will not), amongst a host
of other applications.

1. INTRODUCTION
We are interested here in uncovering relationships between

the appearances of pairs of objects, and particularly in mod-
eling the human notion of which objects complement each
other and which might be seen as acceptable alternatives.
We thus seek to model what is a fundamentally human no-
tion of the visual relationship between a pair of objects,
rather than merely modeling the visual similarity between
them. There has been some interest of late in modeling the
visual style of places [6, 27], and objects [39]. We, in con-
trast, are not seeking to model the individual appearances of
objects, but rather how the appearance of one object might
influence the desirable visual attributes of another.

There are a range of situations in which the appearance of
an object might have an impact on the desired appearance
of another. Questions such as ‘Which frame goes with this
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Figure 1: A query image and a matching accessory,
pants, and a shirt.

picture’, ‘Where is the lid to this’, and ‘Which shirt matches
these shoes’ (see Figure 1) inherently involve a calculation
of more than just visual similarity, but rather a model of
the higher-level relationships between objects. The primary
commercial application for such technology is in recommend-
ing items to a user based on other items they have already
showed interest in. Such systems are of considerable eco-
nomic value, and are typically built by analysing meta-data,
reviews, and previous purchasing patterns. By introducing
into these systems the ability to examine the appearance of
the objects in question we aim to overcome some of their
limitations, including the ‘cold start’ problem [28, 41].

The problem we pose inherently requires modeling human
visual preferences. In most cases there is no intrinsic con-
nection between a pair of objects, only a human notion that
they are more suited to each other than are other potential
partners. The most common approach to modeling such hu-
man notions exploits a set of hand-labeled images created for
the task. The labeling effort required means that most such
datasets are typically relatively small, although there are a
few notable exceptions. A small dataset means that com-
plex procedures are required to extract as much information
as possible without over-fitting (see [2, 5, 22] for example).
It also means that the results are unlikely to be transferable
to related problems. Creating a labeled dataset is particu-
larly onerous when modeling pairwise distances because the
number of annotations required scales with the square of the
number of elements.

We propose here instead that one might operate over a
much larger dataset, even if it is only tangentially related to
the ultimate goal. Thus, rather than devising a process (or
budget) for manually annotating images, we instead seek a
freely available source of a large amount of data which may
be more loosely related to the information we seek. Large-
scale databases have been collected from the web (without
other annotation) previously [7, 34]. What distinguishes the
approach we propose here, however, is the fact that it suc-
ceeds despite the indirectness of the connection between the
dataset and the quantity we hope to model.



1.1 A visual dataset of styles and substitutes
We have developed a dataset suitable for the purposes de-

scribed above based on the Amazon web store. The dataset
contains over 180 million relationships between a pool of
almost 6 million objects. These relationships are a result
of visiting Amazon and recording the product recommen-
dations that it provides given our (apparent) interest in
the subject of a particular web page. The statistics of the
dataset are shown in Table 1. An image and a category la-
bel are available for each object, as is the set of users who
reviewed it. We have made this dataset available for aca-
demic use, along with all code used in this paper to ensure
that our results are reproducible and extensible.1 We label
this the Styles and Substitutes dataset.

The recorded relationships describe two specific notions of
‘compatibility’ that are of interest, namely those of substi-
tute and complement goods. Substitute goods are those that
can be interchanged (such as one pair of pants for another),
while complements are those that might be purchased to-
gether (such as a pair of pants and a matching shirt) [23].
Specifically, there are 4 categories of relationship represented
in the dataset: 1) ‘users who viewed X also viewed Y’ (65M
edges); 2) ‘users who viewed X eventually bought Y’ (7.3M
edges); 3) ‘users who bought X also bought Y’ (104M edges);
and 4) ‘users bought X and Y simultaneously’ (3.4M edges).
Critically, categories 1 and 2 indicate (up to some noise)
that two products may be substitutable, while 3 and 4 indi-
cate that two products may be complementary. According
to Amazon’s own tech report [19] the above relationships
are collected simply by ranking products according to the
cosine similarity of the sets of users who purchased/viewed
them.

Note that the dataset does not document users’ prefer-
ences for pairs of images, but rather Amazon’s estimate of
the set of relationships between pairs objects. The human
notion of the visual compatibility of these images is only one
factor amongst many which give rise to these estimated rela-
tionships, and it is not a factor used by Amazon in creating
them. We thus do not wish to summarize the Amazon data,
but rather to use what it tells us about the images of related
products to develop a sense of which objects a human might
feel are visually compatible. This is significant because many
of the relationships between objects present in the data are
not based on their appearance. People co-purchase ham-
mers and nails due to their functions, for example, not their
appearances. Our hope is that the non-visual decision fac-
tors will appear as uniformly distributed noise to a method
which considers only appearance, and that the visual deci-
sion factors might reinforce each other to overcome the effect
of this noise.

1.2 Related work
The closest systems to what we propose above are content-

based recommender systems [18] which attempt to model
each user’s preference toward particular types of goods. This
is typically achieved by analyzing metadata from the user’s
previous activities. This is as compared to collaborative rec-
ommendation approaches which match the user to profiles
generated based on the purchases/behavior of other users
(see [1, 16] for surveys). Combinations of the two [3, 24]
have been shown to help address the sparsity of the review

1http://cseweb.ucsd.edu/~jmcauley/

data available, and the cold-start problem (where new prod-
ucts don’t have reviews and are thus invisible to the recom-
mender system) [28, 41]. The approach we propose here
could also help address these problems.

There are a range of services such as Jinni2 which promise
content-based recommendations for TV shows and similar
media, but the features they expoit are based on reviews and
meta-data (such as cast, director etc.), and their ontology is
hand-crafted. The Netflix prize was a well publicized com-
petition to build a better personalized video recommender
system, but there again no actual image analysis is taking
place [17]. Hu et al. [9] describe a system for identifying
a user’s style, and then making clothing recommendations,
but this is achieved through analysis of ‘likes’ rather than
visual features.

Content-based image retrieval gives rise to the problem
of bridging the ‘semantic-gap’ [32], which requires returning
results which have similar semantic content to a search im-
age, even when the pixels bear no relationship to each other.
It thus bears some similarity to the visual recommenda-
tion problem, as both require modeling a human preference
which is not satisfied by mere visual similarity. There are a
variety of approaches to this problem, many of which seek
a set of results which are visually similar to the query and
then separately find images depicting objects of the same
class as those in the query image; see [2, 15, 22, 38], for ex-
ample. Within the Information Retrieval community there
has been considerable interest of late in incorporating user
data into image retrieval systems [37], for example through
browsing [36] and click-through behavior [26], or by making
use of social tags [29]. Also worth mentioning with respect to
image retrieval is [12], which also considered using images
crawled from Amazon, albeit for a different task (similar-
image search) than the one considered here.

There have been a variety of approaches to modeling hu-
man notions of similarity between different types of images
[30], forms of music [31], or even tweets [33], amongst other
data types. Beyond measuring similarity, there has also been
work on measuring more general notions of compatibility.
Murillo et al. [25], for instance, analyze photos of groups of
people collected from social media to identify which groups
might be more likely to socialize with each other, thus im-
plying a distance measure between images. This is achieved
by estimating which of a manually-specified set of ‘urban
tribes’ each group belongs to, possibly because only 340 im-
ages were available.

Yamaguchi et al. [40] capture a notion of visual style when
parsing clothing, but do so by retrieving visually similar
items from a database. This idea was extended by Kiapour
et al. [14] to identify discriminating characteristics between
different styles (hipster vs. goth for example). Di et al. [5]
also identify aspects of style using a bag-of-words approach
and manual annotations.

A few other works that consider visual features specifically
for the task of clothing recommendation include [10, 13, 20].
In [10] and [13] the authors build methods to parse complete
outfits from single images, in [10] by building a carefully la-
beled dataset of street images annotated by ‘fashionistas’,
and in [13] by building algorithms to automatically detect
and segment items from clothing images. In [13] the au-
thors propose an approach to learn relationships between

2http://jinni.com
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Category Users Items Ratings Edges

Books 8,201,127 1,606,219 25,875,237 51,276,522
Cell Phones & Accessories 2,296,534 223,680 5,929,668 4,485,570
Clothing, Shoes & Jewelry 3,260,278 773,465 25,361,968 16,508,162
Digital Music 490,058 91,236 950,621 1,615,473
Electronics 4,248,431 305,029 11,355,142 7,500,100
Grocery & Gourmet Food 774,095 120,774 1,997,599 4,452,989
Home & Kitchen 2,541,693 282,779 6,543,736 9,240,125
Movies & TV 2,114,748 150,334 6,174,098 5,474,976
Musical Instruments 353,983 65,588 596,095 1,719,204
Office Products 919,512 94,820 1,514,235 3,257,651
Toys & Games 1,352,110 259,290 2,386,102 13,921,925

Total 20,980,320 5,933,184 143,663,229 180,827,502

Table 1: The types of objects from a few categories in our dataset and the number of relationships between
them.

clothing items and events (e.g. birthday parties, funerals)
in order to recommend event-appropriate items. Although
related to our approach, these methods are designed for the
specific task of clothing recommendation, requiring hand-
crafted methods and carefully annotated data; in contrast
our goal is to build a general-purpose method to understand
relationships between objects from large volumes of unla-
beled data. Although our setting is perhaps most natural
for categories like clothing images, we obtain surprisingly
accurate performance when predicting relationships in a va-
riety of categories, from recommending outfits to predicting
which books will be co-purchased based on their cover art.

In summary, our approach is distinct from the above in
that we aim to generalize the idea of a visual distance mea-
sure beyond measuring only similarity. Doing so demands a
very large amount of training data, and our reluctance for
manual annotation necessitates a more opportunistic data
collection strategy. The scale of the data, and the fact that
we don’t have control over its acquisition, demands a suit-
ably scalable and robust modeling approach. The novelty in
what we propose is thus in the quantity we choose to model,
the data we gather to do so, and the method for extracting
one from the other.

1.3 A visual and relational recommender sys-
tem

We label the process we develop for exploiting this data
a visual and relational recommender system as we aim to
model human visual preferences, and the system might be
used to recommend one object on the basis of a user’s ap-
parent interest in another. The system shares these charac-
teristics with more common forms of recommender system,
but does so on the basis of the appearance of the object,
rather than metadata, reviews, or similar.

2. THE MODEL
Our notation is defined in Table 2.
We seek a method for representing the preferences of users

for the visual appearance of one object given that of another.
A number of suitable models might be devised for this pur-
pose, but very few of them will scale to the volume of data
available.

For every object in the dataset we calculate an F -dimensio-
nal feature vector x ∈ RF using a convolutional neural
network as described in Section 2.3. The dataset contains

notation explanation

xi feature vector calculated from object image i
F feature dimension (i.e., xi ∈ RF )
rij a relationship between objects i and j
R the set of relationships between all objects
dθ(xi,xj) parameterized distance between xi and xj
M F × F Mahalanobis transform matrix
Y an F ×K matrix, such that YYT = M

D(u) diagonal user-personalization matrix for user u
σc(·) shifted sigmoid function with parameter c
R∗ R plus a random sample of non-relationships
U ,V, T training, validation, and test subsets of R∗
si K-dimension embedding of xi into ‘style-space’

Table 2: Notation.

0 c 10d(i, j)
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σc(−d(i, j))

Figure 2: Shifted (and inverted) sigmoid with pa-
rameter c = 2.

a set R of relationships where rij ∈ R relates objects i
and j. Each relationship is of one of the four classes listed
above. Our goal is to learn a parameterized distance trans-
form d(xi,xj) such that feature vectors {xi,xj} for objects
that are related (rij ∈ R) are assigned a lower distance than
those that are not (rij /∈ R). Specifically, we seek d(·,·) such
that P (rij ∈ R) grows monotonically with −d(xi,xj).
Distances and probabilities: We use a shifted sigmoid
function to relate distance to probability thus

P (rij ∈ R) = σc(−d(xi,xj)) =
1

1 + ed(xi,xj)−c
. (1)

This is depicted in Figure 2. This decision allows us to cast
the problem as logistic regression, which we do for reasons
of scalability. Intuitively, if two items i and j have distance
d(xi,xj) = c, then they have probability 0.5 of being related;
the probability increases above 0.5 for d(xi,xj) < c, and



decreases as d(xi,xj) > c. Note that we do not specify c
in advance, but rather c is chosen to maximize prediction
accuracy.

We now describe a set of potential distance functions.
Weighted nearest neighbor: Given that different feature
dimensions are likely to be more important to different rela-
tionships, the simplest method we consider is to learn which
feature dimensions are relevant for a particular relationship.
We thus fit a distance function of the form

dw(xi,xj) = ‖w ◦ (xi − xj)‖22, (2)

where ◦ is the Hadamard product.
Mahalanobis transform: (eq. 2) is limited to modeling
the visual similarity between objects, albeit with varying
emphasis per feature dimension. It is not expressive enough
to model subtler notions, such as which pairs of pants and
shoes belong to the same ‘style’, despite having different ap-
pearances. For this we need to learn how different feature
dimensions relate to each other, i.e., how the features of a
pair of pants might be transformed to help identify a com-
patible pair of shoes.

To identify such a transformation, we relate image fea-
tures via a Mahalanobis distance, which essentially general-
izes (eq. 2) so that weights are defined at the level of pairs
of features. Specifically we fit

dM(xi,xj) = (xi − xj)M(xi − xj)
T . (3)

A full rank p.s.d. matrix M has too many parameters to
fit tractably given the size of the dataset. For example, using
features with dimension F = 212, learning a transform as in
(eq. 3) requires us to fit approximately 8 million parameters;
not only would this be prone to overfitting, it is simply not
practical for existing solvers.

To address these issues, and given the fact that M param-
eterises a Mahanalobis distance, we approximate M such
that M ' YYT where Y is a matrix of dimension F ×K.
We therefore define

dY(xi,xj) = (xi − xj)YYT (xi − xj)
T

= ‖(xi − xj)Y‖22.
(4)

Note that all distances (as well as their derivatives) can be
computed in O(FK), which is significant for the scalability
of the method. Similar ideas appear in [4, 35], which also
consider the problem of metric learning via low-rank em-
beddings, albeit using a different objective than the one we
consider here.

2.1 Style space
In addition to being computationally useful, the low-rank

transform in (eq. 4) has a convenient interpretation. Specif-
ically, if we consider the K-dimensional vector si = xiY,
then (eq. 4) can be rewritten as

dY(xi,xj) = ‖si − sj‖22. (5)

In other words, (eq. 4) yields a low-dimensional embedding
of the features xi and xj . We refer to this low-dimensional
representation as the product’s embedding into ‘style-space’,
in the hope that we might identify Y such that related ob-
jects fall close to each other despite being visually dissimilar.
The notion of ‘style’ is learned automatically by training the
model on pairs of objects which Amazon considers to be re-
lated.

2.2 Personalizing styles to individual users
So far we have developed a model to learn a global notion

of which products go together, by learning a notion of ‘style’
such that related products should have similar styles. As an
addition to this model we can personalize this notion by
learning for each individual user which dimensions of style
they consider to be important.

To do so, we shall learn personalized distance functions
dY,u(xi,xj) that measure the distance between the items
i and j according to the user u. We choose the distance
function

dY,u(xi,xj) = (xi − xj)YD(u)YT (xi − xj)
T (6)

where D(u) is a K ×K diagonal (positive semidefinite) ma-

trix. In this way the entry D
(u)
kk indicates the extent to which

the user u ‘cares about’ the kth style dimension.

In practice we fit a U × K matrix X such that D
(u)
kk =

Xuk. Much like the simplification in (eq. 5), the distance
dY,u(xi,xj) can be conveniently written as

dY,u(xi,xj) = ‖(si − sj) ◦Xu‖22. (7)

In other words, Xu is a personalized weighting of the pro-
jected style-space dimensions.

The construction in (eq. 6 and 7) only makes sense if there
are users associated with each edge in our dataset, which is
not true of the four graph types we have presented so far.
Thus to study the issue of user personalization we make use
of our rating and review data (see Table 1). From this we
sample a dataset of triples (i,j,u) of products i and j that
were both purchased by user u (i.e., u reviewed them both).
We describe this further when we outline our experimental
protocol in Section 4.1.

2.3 Features
Features are calculated from the original images using the

Caffe deep learning framework [11]. In particular, we used a
Caffe reference model3 with 5 convolutional layers followed
by 3 fully-connected layers, which has been pre-trained on
1.2 million ImageNet (ILSVRC2010) images. We use the
output of FC7, the second fully-connected layer, which re-
sults in a feature vector of length F = 4096.

3. TRAINING
Since we have defined a probability associated with the

presence (or absence) of each relationship, we can proceed
by maximizing the likelihood of an observed relationship set
R. In order to do so we randomly select a negative set
Q = {rij |rij /∈ R} such that |Q| = |R| and optimize the log
likelihood

l(Y,c|R,Q) =
∑
rij∈R

log(σc(−dY(xi,xj)))+

∑
rij∈Q

log(1− σc(−dY(xi,xj))). (8)

Learning then proceeds by optimizing l(Y,c|R,Q) over both
Y and c which we achieve by gradient ascent. We use (hy-
brid) L-BFGS, a quasi-Newton method for non-linear opti-
mization of problems with many variables [21]. Likelihood

3bvlc reference caffenet from caffe.berkeleyvision.org

caffe.berkeleyvision.org


(eq. 8) and derivative computations can be näıvely paral-
lelized over all pairs rij ∈ R ∪ Q. Training on our largest
dataset (Amazon books) with a rank K = 100 transform
required around one day on a 12 core machine.

4. EXPERIMENTS
We compare our model against the following baselines:
We compare against Weighted Nearest Neighbor (WNN)

classification, as is described in Section 1.3. We also compare
against a method we label Category Tree (CT); CT is based
on using Amazon’s detailed category tree directly (which
we have collected for Clothing data, and use for later exper-
iments), which allows us to assess how effective an image-
based classification approach could be, if it were perfect. We
then compute a matrix of coocurrences between categories
from the training data, and label two products (a,b) as ‘re-
lated’ if the category of b belongs to one of the top 50% of
most commonly linked categories for products of category
a.4 Nearest neighbor results (calculated by optimizing a
threshold on the `2 distance using the training data) were
not significantly better than random, and have been sup-
pressed for brevity.
Comparison against non-visual baselines As a non-
visual comparison, we trained topic models on the reviews
of each product (i.e., each document di is the set of reviews
of the product i) and fit weighted nearest neighbor classifiers
of the form

dw(θi, θj) = ‖w ◦ (θi − θj)‖22, (9)

where θi and θj are topic vectors derived from the reviews
of the products i and j. In other words, we simply adapted
our WNN baseline to make use of topic vectors rather than
image features.5 We used a 100-dimensional topic model
trained using Vowpal Wabbit [8].

However, this baseline proved not to be competitive against
the alternatives described above (e.g. only 60% accuracy on
our largest dataset, ‘Books’). One explanation may sim-
ply be that is is difficult to effectively train topic models
at the 1M+ document scale; another explanation is simply
that the vast majority of products have few reviews. Not
surprisingly, the number of reviews per product follows a
power-law, e.g. for Men’s Clothing:

0 20

number of reviews

0

120000

co
un

t

Men’s clothing

This issue is in fact exacerbated in our setting, as to predict
a relationship between products we require both to have
reliable feature representations, which will be true only if
both products have several reviews.

Although we believe that predicting such relationships us-
ing text is a promising direction of future research (and one

4We experimented with several variations on this theme, and
this approach yielded the best performance.
5We tried the same approach at the word (rather than the
topic) level, though this led to slightly worse results.

substitutes complements

Category method
buy after
viewing

also
viewed

also
bought

bought
together

Books
WNN 66.5% 62.8% 63.3% 65.4%

K = 10 70.1% 68.6% 69.3% 68.1%
K = 100 71.2% 69.8% 71.2% 68.6%

Cell Phones
and Accessories

WNN 73.4% 66.4% 69.1% 79.3%
K = 10 84.3% 78.9% 78.7% 83.1%
K = 100 85.9% 83.1% 83.2% 87.7%

Clothing,
Shoes,
and Jewelry

WNN · 77.2% 74.2% 78.3%
K = 10 · 87.5% 84.7% 89.7%
K = 100 · 88.8% 88.7% 92.5%

Digital Music
WNN 60.2% 56.7% 62.2% 53.3%

K = 10 68.7% 60.9% 74.7% 56.0%
K = 100 72.3% 63.8% 76.2% 59.0%

Electronics
WNN 76.5% 73.8% 67.6% 73.5%

K = 10 83.6% 80.3% 77.8% 79.6%
K = 100 86.4% 84.0% 82.6% 83.2%

Grocery and
Gourmet Food

WNN · 69.2% 70.7% 68.5%
K = 10 · 77.8% 81.2% 79.6%
K = 100 · 82.5% 85.2% 84.5%

Home and
Kitchen

WNN 75.1% 68.3% 70.4% 76.6%
K = 10 78.5% 80.5% 78.8% 79.3%
K = 100 81.6% 83.8% 83.4% 83.2%

Movies and TV
WNN 66.8% 65.6% 61.6% 59.6%

K = 10 71.9% 69.6% 72.8% 67.6%
K = 100 72.3% 70.0% 77.3% 70.7%

Musical
Instruments

WNN 79.0% 76.0% 75.0% 77.2%
K = 10 84.7% 87.0% 85.3% 82.3%
K = 100 89.5% 87.2% 84.4% 84.7%

Office Products
WNN 72.8% 75.0% 74.4% 73.7%

K = 10 81.2% 84.0% 84.1% 78.6%
K = 100 85.9% 87.2% 85.8% 80.9%

Toys and
Games

WNN 67.0% 72.8% 71.7% 77.6%
K = 10 75.8% 78.3% 78.4% 80.3%
K = 100 77.1% 81.9% 82.4% 82.6%

Table 3: Accuracy of link prediction on top-level
categories for each edge type with increasing model
rank K. Random classification is 50% accurate
across all experiments.

we are exploring), we simply wish to highlight the fact that
there appears to be no ‘silver bullet’ to predict such relation-
ships using text, primarily due to the ‘cold start’ issue that
arises due to the long tail of obscure products with little text
associated with them. Indeed, this is a strong argument in
favor of building predictors based on visual features, since
images are available even for brand new products which are
yet to receive even a single review.

4.1 Experimental protocol
We split the dataset into its top-level categories (Books,

Movies, Music, etc.) and further split the Clothing category
into second-level categories (Men’s, Women’s, Boys, Girls,
etc.). We focus on results from a few representative subcat-
egories. Complete code for all experiments and all baselines
is available online.6

For each category, we consider the subset of relationships

6http://cseweb.ucsd.edu/~jmcauley/
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substitutes complements

Category method
also

viewed
also

bought
bought

together

Baby

CT 77.1% 70.5% 80.1%
WNN 83.0% 87.7% 81.7%

K = 10 92.2% 92.7% 91.5%
K = 100 94.6% 94.3% 93.3%

Boots

CT 75.0% 72.7% 74.2%
WNN 83.9% 85.6% 84.7%

K = 10 93.0% 94.9% 95.4%
K = 100 94.6% 96.8% 96.4%

Boys

CT 81.9% 77.3% 83.1%
WNN 85.0% 87.2% 87.9%

K = 10 94.4% 94.1% 93.8%
K = 100 96.5% 95.8% 95.1%

Girls

CT 83.0% 76.2% 78.7%
WNN 83.3% 86.0% 84.8%

K = 10 94.5% 93.6% 93.0%
K = 100 96.1% 95.3% 94.5%

Jewelry

CT 50.1% 49.5% 51.1%
WNN 81.2% 81.6% 75.8%

K = 10 89.6% 89.3% 82.8%
K = 100 89.1% 91.6% 86.4%

Men

CT 88.2% 78.4% 83.6%
WNN 86.9% 78.4% 82.3%

K = 10 91.6% 89.8% 92.1%
K = 100 92.6% 93.3% 95.1%

Novelty
Costumes

CT 79.1% 76.3% 81.5%
WNN 80.1% 74.1% 76.0%

K = 10 86.3% 86.6% 85.0%
K = 100 89.2% 90.0% 89.1%

Shoes and
Accessories

CT 81.3% 78.1% 90.4%
WNN 75.4% 80.2% 77.9%

K = 10 89.7% 90.4% 93.5%
K = 100 92.3% 94.7% 96.2%

Women

CT 86.8% 79.1% 84.3%
WNN 78.8% 76.1% 80.0%

K = 10 88.9% 87.8% 91.5%
K = 100 90.4% 91.2% 94.3%

Table 4: Accuracy of link prediction on subcate-
gories of ‘Clothing, Shoes, and Jewelry’ with in-
creasing rank K. Note that ‘buy after viewing’ links
are not surfaced for clothing data on Amazon.

from R that connect products within that category. After
generating random samples of non-relationships, we separate
R and Q into training, validation, and test sets (80/10/10%,
up to a maximum of two million training relationships). Al-
though we do not fit hyperparameters (and therefore do not
make use of the validation set), we maintain this split in case
it proves useful to those wishing to benchmark their algo-
rithms on this data. While we did experiment with simple
`2 regularizers, we found ourselves blessed with a sufficient
overabundance of data that overfitting never presented an
issue (i.e., the validation error was rarely significantly higher
than the training error).

To be completely clear, our protocol consists of the fol-
lowing:

1. Each category and graph type forms a single experi-
ment (e.g. predict ‘bought together’ relationships for
Women’s clothing).

2. Our goal is to distinguish relationships from non-relati-

Figure 3: Examples of closely-clustered items in
style space (Men’s and Women’s clothing ‘also
viewed’ data).

onships (i.e., link prediction). Relationships are iden-
tified when our predictor (eq. 1) outputs P (rij ∈ R) >
0.5.

3. We consider all positive relationships and a random
sample of non-relationships (i.e., ‘distractors’) of equal
size. Thus the performance of a random classifier is
50% for all experiments.

4. All results are reported on the test set.

Results on a selection of top-level categories are shown in
Table 3, with further results for clothing data shown in Table
4. Recall when interpreting these results that the learned
model has reference to the object images only. It is thus
estimating the existence of a specified form of relationship
purely on the basis of appearance.

In every case the proposed method outperforms both the
category-based method and weighted nearest neighbor, and



Figure 4: A selection of widely separated members
of a single K-means cluster, demonstrating an ap-
parent stylistic coherence.

Figure 5: Examples of K-means clusters in style
space (Books ‘also viewed’ and ‘also bought’ data).
Although ‘styles’ for categories like books are not so
readily interpretable as they are for clothes, visual
features are nevertheless able to uncover meaning-
ful distinctions between different product categories,
e.g. the first four rows above above appear to be chil-
dren’s books, self-help books, romance novels, and
graphic novels.

the increase from K = 10 to K = 100 uniformly improves
performance. Interestingly, the performance on compliments
vs. substitutes is approximately the same. The extent to
which the K = 100 results improve upon the WNN results
may be seen as an indication of the degree to which visual
similarity between images fails to capture a more complex
human visual notion of which objects might be seen as being
substitutes or compliments for each other. This distinction
is smallest for ‘Books’ and greatest for ‘Clothing Shoes and
Jewelery’ as might be expected.

We have no ground truth relating the true human visual
preference for pairs of objects, of course, and thus evalu-
ate above against our dataset. This has the disadvantage
that the dataset contains all of the Amazon recommenda-
tions, rather than just those based on decisions made by
humans on the basis of object appearance. This means that
in addition to documenting the performance of the proposed
method, the results may also be taken to indicate the extent
to which visual factors impact upon the decisions of Amazon
customers. The comparison across categories is particularly
interesting. It is to be expected that appearance would be
a significant factor in Clothing decisions, but it was not ex-
pected that they would be a factor in the purchase of Books.
One possible interpretation of this effect might be that cus-
tomers have preferences for particular genres of books and
that individual genres have characteristic styles of covers.

4.2 Personalized recommendations
Finally we evaluate the ability of our model to personalize

1 2 3 4 5 6 7 8

source

target

Figure 6: Navigating to distant products: each col-
umn shows a low-cost path between two objects such
that adjacent products in the path are visually con-
sistent, even when the end points are not.

Figure 7: A 2-dimensional embedding of a small
sample of Boys clothing images (‘also viewed’ data).

co-purchasing recommendations to individual users, that is
we examine the effect of the user personalization term in
(eqs. 6 and 7). Here we do not use the graphs from Tables 3
and 4, since those are ‘population level’ graphs which are not
annotated in terms of the individual users who co-purchased
and co-browsed each pair of products. Instead for this task
we build a dataset of co-purchases from products that users
have reviewed. That is, we build a dataset of tuples of the
form (i,j,u) for pairs of products i and j that were purchased
by user u. We train on users with at least 20 purchases, and
randomly sample 50 co-purchases and 50 non-co-purchases
from each user in order to build a balanced dataset. Results
are shown in Table 5; here we see that the addition of a user
personalization term yields a small but significant improve-
ment when predicting co-purchases (similar results on other
categories withheld for brevity).

5. VISUALIZING STYLE SPACE
Recall that each image is projected into ‘style-space’ by

the transformation si = xiY, and note that the fact that
it is based on pairwise distances alone means that the em-
bedding is invariant under isomorphism. That is, applying
rotations, translations, or reflections to si and sj will pre-
serve their distance in (eq. 5). In light of these factors we
perform k-means clustering on the K dimensional embedded
coordinates of the data in order to visualize the effect of the
embedding.

Figure 3 shows images whose projections are close to the
centers of a set of selected representative clusters for Men’s



Category method accuracy

Men’s clothing

CT 84.8%
WNN 84.3%
K = 10, no personalization 90.9%
K = 10, personalized 93.2%

Women’s
clothing

CT 80.5%
WNN 80.8%
K = 10, no personalization 87.6%
K = 10, personalized 89.1%

Table 5: Performance of our model at predicting
copurchases with a user personalization term (eqs. 6
and 7).

and Women’s clothing (using a model trained on the ‘also
viewed’ graph with K = 100). Naturally items cluster
around colors and shapes (e.g. shoes, t-shirts, tank tops,
watches, jewelery), but more subtle characterizations exist
as well. For instance, leather boots are separated from ugg
(that is sheep skin) boots, despite the fact that the visual dif-
ferences are subtle. This is presumably because these items
are preferred by different sets of Amazon users. Watches
cluster into different color profiles, face shapes, and digital
versus analogue. Other clusters cross multiple categories,
for instance we find clusters of highly-colorful items, items
containing love hearts, and items containing animals. Fig-
ure 4 shows a set of images which project to locations that
span a cluster.

Although performance is admittedly not outstanding for
a category such as books, it is somewhat surprising that an
accuracy of even 70% can be achieved when predicting book
co-purchases. Figure 5 visualizes a few examples of style-
space clusters derived from Books data. Here it seems that
there is at least some meaningful information in the cover
of a book to predict which products might be purchased
together—children’s books, self-help books, romance nov-
els, and comics (for example) all seem to have characteristic
visual features which are identified by our model.

In Figure 6 we show how our model can be used to nav-
igate between related items—here we randomly select two
items that are unlikely to be co-browsed, and find a low cost
path between them as measured by our learned distance
measure. Subjectively, the model identifies visually smooth
transitions between the source and the target items.

Figure 7 provides a visualization of the embedding of Boys
clothing achieved by setting K = 2 (on co-browsing data).
Sporting shoes drift smoothly toward slippers and sandals,
and underwear drifts gradually toward shirts and coats.

6. GENERATING RECOMMENDATIONS
We here demonstrate that the proposed model can be used

to generate recommendations that might be useful to a user
of a web store. Given a query item (e.g. a product a user
is currently browsing, or has just purchased), our goal is to
recommend a selection of other items that might comple-
ment it. For example, if a user is browsing pants, we might
want to recommend a shirt, shoes, or accessories that belong
to the same style.

Here, Amazon’s rich and detailed category hierarchy can
help us. For categories such as women’s or men’s cloth-

query recommendation query recommendation

Figure 8: Outfits generated by our algorithm
(Women’s outfits at left; Men’s outfits at right). The
first column shows a ‘query’ item that is randomly
selected from the product catalogue. The right three
columns match the query item with a top, pants,
shoes, and an accessory, (minus whichever category
contains the query item).

ing, we might define an ‘outfit’ as a combination of pants,
a top, shoes, and an accessory (we do this for the sake of
demonstration, though far more complex combinations are
possible—our category tree for clothing alone has hundreds
of nodes). Then, given a query item our goal is simply to se-
lect items from each of these categories that are most likely
to be connected based on their visual style.

Specifically, given a query item xq, for each category C
(represented as a set of item indices), we generate recom-
mendations according to

argmax
j∈C

PY(rqj ∈ R), (10)

i.e., the minimum distance according to our measure (eq. 4)
amongst objects belonging to the desired category. Ex-
amples of such recommendations are shown in Figures 1
and 8, with randomly chosen queries from women’s and
men’s clothing. Generally speaking the model produces ap-
parently reasonable recommendations, with clothes in each
category usually being of a consistent style.

7. OUTFITS IN THE WILD
An alternate application of the model is to make assess-

ments about outfits (or otherwise combinations of items)
that we observe ‘in the wild’. That is, to the extent that the
tastes and preferences of Amazon customers reflect the zeit-
geist of society at large, this can be seen as a measurement
of whether a candidate outfit is well coordinated visually.

To assess this possibility, we have built two small datasets
of real outfits, one consisting of twenty-five outfits worn by
the hosts of Top Gear (Jeremy Clarkson, Richard Ham-
mond, and James May), and another consisting of seventeen
‘before’ and ‘after’ pairs of outfits from participants on the
television show What Not to Wear (US seasons 9 and 10).
For each outfit, we cropped each clothing item from the im-
age, and then used Google’s reverse image search to identify
images of similar items (examples are shown in Figure 9).



Least coordinated outfits:

Hammond Hammond Clarkson Hammond Hammond Clarkson

Most coordinated outfits:

James May James May James May Clarkson Clarkson Clarkson

Figure 9: Least (top) and most (bottom) coordinated outfits from our Top Gear dataset. Richard Hammond’s
outfits typically have low coordination, James May’s have high coordination, and Jeremy Clarkson straddles
both ends of the coordination spectrum. Pairwise distances are normalized by the number of components in
the outfit so that there is no bias towards outfits with fewer/more components.

Next we rank outfits according to the average log-likeli-
hood of their pairs of components being related using a
model trained on Men’s/Women’s co-purchases (we take the
average so that there is no bias toward outfits with more or
fewer components). All outfits have at least two items.7

Figure 9 shows the most and least coordinated outfits on
Top Gear ; here we find considerable separation between the
level of coordination for each presenter; Richard Hammond
is typically the least coordinated, James May the most, while
Jeremy Clarkson wears a combination of highly coordinated
and highly uncoordinated outfits.

A slightly more quantitative evaluation comes from the
television show What Not to Wear : here participants receive
an ‘outfit makeover’, hopefully meaning that their made-
over outfit is more coordinated than the original. Examples
of participants before and after their makeover, along with
the change in log likelihood are shown in Figure 10. Indeed
we find that made-over outfits have a higher log likelihood in
12 of the 17 cases we observed (p ' 7%; log-likelihoods are
normalized to correct any potential bias due to the number
of components in the outfit). This is an important result, as
it provides external (albeit small) validation of the learned
model which is independent of our dataset.

8. CONCLUSION
We have shown that it is possible to model the human

notion of what is visually related by investigation of a suit-
ably large dataset, even where that information is somewhat
tangentially contained therein. We have also demonstrated
that the proposed method is capable of modeling a variety

7Our measure of coordination is thus undefined for a subject
wearing only a single item, though in general such an outfit
would be a poor fashion choice in the opinion of the authors.

of visual relationships beyond simple visual similarity. Per-
haps what distinguishes our method most is thus its ability
to model what makes items complementary. To our knowl-
edge this is the first attempt to model human preference for
the appearance of one object given that of another in terms
of more than just the visual similarity between the two. It
is almost certainly the first time that it has been attempted
directly and at this scale.

We also proposed visual and relational recommender sys-
tems as a potential problem of interest to the information
retrieval community, and provided a large dataset for their
training and evaluation. In the process we managed to figure
out what not to wear, how to judge a book by its cover, and
to show that James May is more fashionable than Richard
Hammond.
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