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Abstract
Time plays an essential role in the diffusion of in-
formation, influence and disease over networks.
In many cases we only observe when a node
copies information, makes a decision or becomes
infected – but the connectivity, transmission rates
between nodes and transmission sources are un-
known. Inferring the underlying dynamics is
of outstanding interest since it enables forecast-
ing, influencing and retarding infections, broadly
construed. To this end, we model diffusion pro-
cesses as discrete networks of continuous tempo-
ral processes occurring at different rates. Given
cascade data – observed infection times of nodes
– we infer the edges of the global diffusion net-
work and estimate the transmission rates of each
edge that best explain the observed data. The op-
timization problem is convex. The model nat-
urally (without heuristics) imposes sparse solu-
tions and requires no parameter tuning. The
problem decouples into a collection of indepen-
dent smaller problems, thus scaling easily to net-
works on the order of hundreds of thousands of
nodes. Experiments on real and synthetic data
show that our algorithm both recovers the edges
of diffusion networks and accurately estimates
their transmission rates from cascade data.

1. Introduction
Diffusion and propagation processes have received increas-
ing attention in a broad range of domains: information
propagation (Adar & Adamic, 2005; Gomez-Rodriguez
et al., 2010; Meyers & Leskovec, 2010), social net-
works (Kempe et al., 2003; Lappas et al., 2010), viral mar-
keting (Watts & Dodds, 2007) and epidemiology (Wallinga
& Teunis, 2004).
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Observing a diffusion process often reduces to noting when
nodes (people, blogs, etc.) reproduce a piece of informa-
tion, get infected by a virus, or buy a product. Epidemiolo-
gists can observe when a person becomes ill but they can-
not tell who infected her or how many exposures and how
much time was necessary for the infection to take hold. In
information propagation, we observe when a blog mentions
a piece of information. However if, as is often the case,
the blogger does not link to her source, we do not know
where she acquired the information or how long it took
her to post it. Finally, viral marketers can track when cus-
tomers buy products or subscribe to services, but typically
cannot observe who influenced customers’ decisions, how
long they took to make up their minds, or when they passed
recommendations on to other customers. In all these sce-
narios, we observe where and when but not how or why
information (be it in the form of a virus, a meme, or a
decision) propagates through a population of individuals.
The mechanism underlying the process is hidden. How-
ever, the mechanism is of outstanding interest in all three
cases, since understanding diffusion is necessary for stop-
ping infections, predicting meme propagation, or maximiz-
ing sales of a product.

This article presents a method for inferring the mechanisms
underlying diffusion processes based on observed infec-
tions. To achieve this aim, we construct a model incor-
porating some basic assumptions about the spatiotemporal
structures that generate diffusion processes. The assump-
tions are as follows. First, diffusion processes occur over
static (fixed) but unknown networks (directed graphs). Sec-
ond, infections are binary, i.e., a node is either infected or
it is not; we do not model partial infections or the partial
propagation of information. Third, infections along edges
of the network occur independently of each other. Fourth,
an infection can occur at different times: the likelihood of
node a infecting node b at time t is modeled via a proba-
bility density function depending on a, b and t. Finally, we
observe all infections occurring in the network during the
recorded time window. Our aim is to infer the connectiv-
ity of the network and the likelihood of infections across
its edges after observing the times at which nodes in the
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network become infected.

In more detail, we formulate a generative probabilistic
model of diffusion that aims to describe realistically how
infections occur over time in a static network. Finding
the optimal network and transmission rates maximizing the
likelihood of an observed set of infection cascades reduces
to solving a convex program. The convex problem decou-
ples into many smaller problems, allowing for natural par-
allelization so that our algorithm scales to networks with
hundreds of thousands of nodes. We show the effectiveness
of our method by reconstructing the connectivity and con-
tinuous temporal dynamics of synthetic and real networks
using cascade data.

Related work. The work most closely related to
ours (Gomez-Rodriguez et al., 2010; Meyers & Leskovec,
2010) also uses a generative probabilistic model for infer-
ring diffusion networks. Gomez-Rodriguez et al. (2010)
(NETINF) infers network connectivity using submodular
optimization and Meyers & Leskovec (2010) (CONNIE)
infer not only the connectivity but also a prior probabil-
ity of infection for every edge using a convex program and
some heuristics. However, both papers force the transmis-
sion rate between all nodes to be fixed – and not inferred.
In contrast, our model allows transmission at different rates
across different edges so that we can infer temporally het-
erogeneous interactions within a network, as found in real-
world examples. Thus, we can now infer the temporal dy-
namics of the underlying network.

The main innovation of this paper is to model diffusion as a
spatially discrete network of continuous, conditionally in-
dependent temporal processes occurring at different rates.
Infection transmission depends on the complex intricacies
of the underlying mechanisms (e.g., a person’s susceptibil-
ity to viral infections depends on weather, diet, age, stress
levels, prior exposures to similar pathogens and so on). We
avoid modeling the mechanisms underlying individual in-
fections, and instead develop a data-driven approach, suit-
able for large-scale analyses, that infers the diffusion pro-
cess using only the visible spatiotemporal traces (cascades)
it generates. We therefore model diffusion using only time-
dependent pairwise transmission likelihood between pairs
of nodes, transmission rates and infection times, but not
prior probabilities of infection that depend on unknown
external factors. To the best of our knowledge, continu-
ous temporal dynamics of diffusion networks has not been
modeled or inferred in previous work. We believe this is a
key point for understanding diffusion processes.

2. Problem formulation
This paper develops a method for inferring the spatiotem-
poral dynamics that generate observed infections. In this

section we formulate our model, starting from the data it
is designed for, and concluding with a precise statement of
the network inference problem.

Data. Observations are recorded on a fixed population of
N nodes and consist of a set C of cascades {t1, . . . , t|C|}.
Each cascade tc is a record of observed infection times
within the population during a time interval of length T c.
A cascade is an N -dimensional vector tc := (tc1, . . . , t

c
N )

recording when nodes are infected, tck ∈ [0, T c] ∪ {∞}.
Symbol ∞ labels nodes that are not infected during ob-
servation window [0, T c] – it does not imply that nodes
are never infected. The ‘clock’ is reset to 0 at the start
of each cascade. Lengthening the observation window T c

increases the number of observed infections within a cas-
cade c and results in a more representative sample of the
underlying dynamics. However, these advantages must be
weighed against the cost of observing for longer periods.
For simplicity we assume T c = T for all cascades; the
results generalize trivially.

The time-stamps assigned to nodes by a cascade induce the
structure of a directed acyclic graph (DAG) on the network
(which is not acyclic in general) by defining node i is a par-
ent of j if ti < tj . Thus, it is meaningful to refer to parents
and children within a cascade, but not on the network. The
DAG structure dramatically simplifies the computational
complexity of the inference problem. Also, since the un-
derlying network is inferred from many cascades (each of
which imposes its own DAG structure), the inferred net-
work is typically not a DAG.

Pairwise transmission likelihood. The first step in model-
ing diffusion dynamics is to consider pairwise interactions.
We assume that infections can occur at different rates over
different edges of a network, and aim to infer the transmis-
sion rates between pairs of nodes in the network.

Define f(ti|tj , αj,i) as the conditional likelihood of trans-
mission between a node j and node i. The transmission
likelihood depends on the infection times (tj , ti) and a pair-
wise transmission rate αj,i. A node cannot be infected by a
node infected later in time. In other words, a node j that has
been infected at a time tj may infect a node i at a time ti
only if tj < ti. Although in some scenarios it may be possi-
ble to estimate a non-parametric likelihood empirically, for
simplicity we consider three well-known parametric mod-
els: exponential, power-law and Rayleigh (see Table 1).
Transmission rates are denoted as αj,i ≥ 0 and δ is the
minimum allowed time difference in the power-law to have
a bounded likelihood. As αj,i → 0 the likelihood of in-
fection tends to zero and the expected transmission time
becomes arbitrarily long. Without loss of generality, we
consider δ = 1 in the power-law model from now on.

Exponential and power-laws are monotonic models that



Uncovering the Temporal Dynamics of Diffusion Networks

Table 1.

Model Transmission likelihood Log survival function Hazard function
f(ti|tj ;αj,i) logS(ti|tj ;αj,i) H(ti|tj ;αj,i)

Exponential (EXP)
{
αj,i · e−αj,i(ti−tj)

0
if tj < ti
otherwise −αj,i(ti − tj) αj,i

Power law (POW)

{
αj,i

δ

(
ti−tj
δ

)−1−αj,i

0

if tj + δ < ti
otherwise −αj,i log

(
ti−tj
δ

)
αj,i · 1

ti−tj

Rayleigh (RAY)
{
αj,i(ti − tj)e−

1
2
αj,i(ti−tj)2

0

if tj < ti
otherwise −αj,i (ti−tj)

2

2
αj,i · (ti − tj)

have been previously used in modeling diffusion networks
and social networks (Gomez-Rodriguez et al., 2010; Mey-
ers & Leskovec, 2010). Power-laws model infections with
long-tails. The Rayleigh model is a non-monotonic para-
metric model previously used in epidemiology (Wallinga
& Teunis, 2004). It is well-adapted to modeling fads,
where infection likelihood rises to a peak and then drops
extremely rapidly.

We recall some additional standard notation (Law-
less, 1982). The cumulative density function, denoted
F (ti|tj ;αj,i), is computed from the transmission likeli-
hoods. Given that node j was infected at time tj , the sur-
vival function of edge j → i is the probability that node i
is not infected by node j by time ti:

S(ti|tj ;αj,i) = 1− F (ti|tj ;αj,i).

The hazard function, or instantaneous infection rate, of
edge j → i is the ratio

H(ti|tj ;αj,i) =
f(ti|tj ;αj,i)
S(ti|tj ;αj,i)

.

The hazard functions of our models are simple, Table 1.

Probability of survival given a cascade. We compute the
probability that a node survives uninfected until time T ,
given that some of its parents are already infected. Con-
sider a cascade t := (t1, . . . , tN ) and a node i not in-
fected during the observation window, ti > T . Since each
infected node k may infect i independently, the probabil-
ity that nodes 1 . . . N do not infect node i by time T is
the product of the survival functions of the infected nodes
1 . . . N |tk ≤ T targeting i,∏

tk≤T

S(T |tk;αk,i). (1)

Likelihood of a cascade. Consider a cascade t :=
(t1, . . . , tN ). We first compute the likelihood of the ob-
served infections t≤T = (t1, . . . , tN |ti ≤ T ). Since we

assume infections are conditionally independent given the
parents of the infected nodes, the likelihood factorizes over
nodes as

f(t≤T ;A) =
∏
ti≤T

f(ti|t1, . . . , tN \ ti;A). (2)

Computing the likelihood of a cascade thus reduces to com-
puting the conditional likelihood of the infection time of
each node given the rest of the cascade. As in the indepen-
dent cascade model (Kempe et al., 2003), we assume that
a node gets infected once the first parent infects the node.
Given an infected node i, we compute the likelihood of a
potential parent j to be the first parent by applying Eq. 1,

f(ti|tj ;αj,i)×
∏

j 6=k,tk<ti

S(ti|tk;αk,i). (3)

We now compute the conditional likelihoods of Eq. 2
by summing over the likelihoods of the mutually disjoint
events that each potential parent is the first parent,

f(ti|t1, . . . , tN \ ti;A) =
∑

j:tj<ti

f(ti|tj ;αj,i)×∏
j 6=k,tk<ti

S(ti|tk;αk,i). (4)

By Eq. 2 the likelihood of the infections in a cascade is

f(t≤T ;A) =
∏
ti≤T

∑
j:tj<ti

f(ti|tj ;αj,i)×∏
k:tk<ti,k 6=j

S(ti|tk;αk,i). (5)

Removing the condition k 6= j makes the product indepen-
dent of j,

f(t≤T ;A) =
∏
ti≤T

∏
k:tk<ti

S(ti|tk;αk,i)×

∑
j:tj<ti

f(ti|tj ;αj,i)
S(ti|tj ;αj,i)

. (6)
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Eq. 6 only considers infected nodes. However, the fact that
some nodes are not infected during the observation window
is also informative. We therefore add the multiplicative sur-
vival term from Eq. 1 and also replace the ratios in Eq. 6
with hazard functions:

f(t;A) =
∏
ti≤T

∏
tm>T

S(T |ti;αi,m)×

∏
k:tk<ti

S(ti|tk;αk,i)
∑

j:tj<ti

H(ti|tj ;αj,i). (7)

Assuming independent cascades, the likelihood of a set of
cascades C = {t1, . . . , t|C|} is the product of the likeli-
hoods of the individual cascades given by Eq. 7:∏

tc∈C
f(tc;A). (8)

Network Inference Problem. Our goal is to find the trans-
mission rates αj,i of every pair of nodes such that the like-
lihood of an observed set of cascades C = {t1, . . . , t|C|}
is maximized. Thus, we aim to solve:

minimizeA −
∑
c∈C log f(tc;A)

subject to αj,i ≥ 0, i, j = 1, . . . , N, i 6= j,
(9)

where A := {αj,i | i, j = 1, . . . , n, i 6= j} are the vari-
ables. The edges of the network are those pairs of nodes
with transmission rates αj,i > 0.

3. Proposed algorithm: NETRATE

The solution to Eq. 9 is unique, computable and consistent:

Theorem 1. Given log-concave survival functions and
concave hazard functions in the parameter(s) of the pair-
wise transmission likelihoods, the network inference prob-
lem defined by equation Eq. 9 is convex in A.

Proof. By Eq. 8, the log-likelihood of a set of cascades is

L
(
{t1 . . . t|C|};A

)
=∑

c

Ψ1(tc;A) + Ψ2(tc;A) + Ψ3(tc;A), (10)

where for each cascade tc ∈ {t1, . . . , t|C|},

Ψ1(tc;A) =
∑
i:ti≤T

∑
tm>T

logS(T |ti;αi,m),

Ψ2(tc;A) =
∑
i:ti≤T

∑
j:tj<ti

logS(ti|tj ;αj,i),

Ψ3(tc;A) =
∑
i:ti≤T

log

 ∑
j:tj<ti

H(ti|tj ;αj,i)

 .

If all pairwise transmission likelihoods between pairs of
nodes in the network have log-concave survival functions
and concave hazard functions in the parameter(s) of the
pairwise transmission likelihoods, then convexity of Eq. 9
follows from linearity, composition rules for concavity, and
concavity of the logarithm.

Corollary 2. The network inference problem defined by
equation Eq. 9 is convex for the exponential, power-law
and Rayleigh models.

Theorem 3. The maximum likelihood estimator α̂ given by
the solution of Eq. 9 is consistent.

Proof Sketch. We check the criteria for consistency of iden-
tification, continuity and compactness (Newey & McFad-
den, 1994). The log-likelihood in Eq. 10 is a continuous
function of A for any fixed set of cascades {t1 . . . t|C|},
and each α defines a unique function log f(·|A) on the set
of cascades. Finally, note that L → −∞ for both αij → 0
and αij →∞ for all i, j so we lose nothing imposing upper
and lower bounds thus restricting to a compact subset.

We refer to our network inference method as NETRATE.

Properties of NETRATE. We highlight some common fea-
tures of the solutions to the network inference problem for
the exponential, power-law and Rayleigh models.

All terms in Eq. 10 depend only on transmission rates αj,i
and infection time differences (ti − tj), but not absolute
infection times ti or tj . Our formulation thus does not de-
pend on the absolute time of the root node of each cascade.

The Ψ1 and Ψ2 terms contribute a positively weighted l1-
norm on vector A that encourages sparse solutions (Boyd
& Vandenberghe, 2004). The penalty arises naturally
within the probabilistic model and therefore heuristic
penalty terms to encourage sparsity are not necessary.
Each term of the l1-norm is linearly (exponential model),
logarithmically (power-law) or quadratically (Rayleigh)
weighted by infection times.

The Ψ2 term penalizes edges k → i based on the infec-
tion times difference ti − tk. Edges transmitting infec-
tions slowly are heavily penalized and conversely. The Ψ1

term penalizes edges i → j targeting uninfected nodes j
based on the time T − ti till the observation window cut-
off. Lengthening the observation window produces harsher
penalties – however, it also allows further infections. The
penalties are finite, i.e., if no infection of node j is ob-
served, we can only say that it has survived until time T .
There is insufficient evidence to claim j will never be in-
fected. NETRATE does not use empirically ungrounded
parameters (such as number of edges k and penalty fac-
tor ρ used by NETINF and CONNIE respectively) to leap
from not observing an infection to inferring it is impossi-
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Figure 1. Panels (a-c) plot precision against recall; panels (d-f) plot accuracy. For CONNIE and NETINF we sweep over parameters ρ
(penalty factor) and k (number of edges) respectively to control the solution sparsity in both algorithms, thereby generating a family of
inferred models. NETRATE has no tunable parameters and therefore yields a unique solution. (a,d): 1,024 node hierarchical Kronecker
network with exponential model for 5,000 cascades. (b,e): 1,024 node Forest Fire network with power law model for 5,000 cascades.
(c,f): 1,024 node random Kronecker network with Rayleigh model for 2,000 cascades.

ble. Instead, NETRATE infers that infections are impossi-
ble across certain edges, i.e., that some of the optimal rates
αj,i are 0, based solely on the observed data and the length
of the time horizon.

The Ψ3 term ensures infected nodes have at least one parent
since otherwise the objective function would be negatively
unbounded, i.e., log 0 = −∞. Moreover, our formulation
encourages a natural diminishing property on the number
of parents of a node – since the logarithm grows slowly, it
weakly rewards infected nodes for having many parents.

Optimizing NETRATE. We speed up the convex program
by orders of magnitude via two improvements:

Distributed optimization: The optimization problem splits
into N subproblems, one for each node i, in which we
find N − 1 rates αj,i, j = 1, . . . , N \ i. The computa-
tion can be performed in parallel, obtaining local solutions
that are globally optimal. Importantly, each node’s com-
putation only requires the infection times of other nodes in
cascades it belongs to.

Unfeasible rates: If a pair (j, i) is not in any common
cascades, αj,i only arises in the non-positive term Ψ3 in
Eq. 10, so the optimal αj,i is zero. We therefore simply the
objective function by setting αj,i to zero.

Solving NETRATE. We solve Eq. 9 with CVX, a pack-
age for specifying and solving convex programs (Grant &
Boyd, 2010).

4. Experimental evaluation
We evaluate the performance of NETRATE on: (i) synthetic
networks that mimic the structure of social networks and
(ii) real cascades extracted from the MemeTracker dataset1.
We show that NETRATE discovers more than 95% of the
edges in synthetic networks and more than 60% in real net-
works, accurately recovers transmission rates from diffu-
sion data, and typically outperforms two previously devel-
oped inference algorithms, NETINF and CONNIE. We use
the public implementations of NETINF and CONNIE.

4.1. Experiments on synthetic data

Experimental setup. We focus on synthetic networks
that mimic the structure of real-world diffusion networks
– in particular, social networks. We consider two mod-
els of directed real-world social networks: the Forest Fire
(scale free) model (Barabási & Albert, 1999) and the Kro-
necker Graph model (Leskovec et al., 2010) to generate dif-

1Data available at http://memetracker.org

http://memetracker.org
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Figure 2. NETRATE’s normalized mean absolute error (MAE) for
three types of Kronecker networks (1,024 nodes and 2,048 edges)
and a Forest Fire network (1,024 edges and 2,422 edges) for 5,000
cascades. We consider all three models of transmission: exponen-
tial (EXP), power-law (POW) and Rayleigh (RAY).

fusion networks. We generate three types of Kronecker
graph with very different structures: random (Erdős &
Rényi, 1960) (parameter matrix [0.5, 0.5; 0.5, 0.5]), hierar-
chical (Clauset et al., 2008) ([0.9, 0.1; 0.1, 0.9]) and core-
periphery (Leskovec et al., 2008) ([0.9, 0.5; 0.5, 0.3]).

First, we generate network G∗ by drawing transmission
rates for edges (j, i) from a uniform distribution. For the
exponential and Rayleigh models α ∈ [0.01, 1] and for the
power law α ∈ [0.01, 2]. The transmission rate for an edge
(j, i) models how fast the information spreads from node
j to node i in social networks. Then, we generate a set of
cascades over G∗. Root nodes of cascades are chosen uni-
formly at random. As noted previously, the optimization
problem depends on the time differences (ti − tj). There-
fore, our formulation does not depend on the absolute time
of the root node of each cascade. Once a node is infected,
the transmission likelihoods of outgoing edges determine
the infection times of its neighbours. We record the time of
the first infection if a node is infected more than once. In-
fections are not observed after a pre-specified time horizon
T .

Accuracy of NETRATE. We evaluate NETRATE against
two other inference methods, NETINF and CONNIE, by
comparing the inferred and true networks via three mea-
sures: precision, recall and accuracy. Precision is the frac-
tion of edges in the inferred network Ĝ present in the true
network G∗ . Recall is the fraction of edges of the true
network G∗ present in the inferred network Ĝ. Accuracy
is 1 −

∑
i,j |I(α

∗
i,j)−I(α̂i,j)|∑

i,j I(α
∗
i,j)+

∑
i,j I(α̂i,j)

, where I(α) = 1 if α > 0

and I(α) = 0 otherwise. Inferred networks with no edges
or only false edges have zero accuracy. Second, we evalu-
ate how accurately NETRATE infers transmission rates over
edges by computing the normalized mean absolute error
(MAE, i.e., E

[
|α∗− α̂|/α∗

]
, where α∗ is the true transmis-

sion rate and α̂ is the estimated transmission rate). Note
that in NETRATE, as for real cascades, the probability of
infection depends on both the transmission rate and the ob-

servation window. In contrast, CONNIE assigns probability
priors to edges that are defined without reference to an ob-
servation window. Therefore, the values assigned to edges
by NETRATE and CONNIE are not comparable, so we do
not compute MAE for CONNIE.

Figure 1 compares the precision, recall and accuracy of
NETRATE with NETINF and CONNIE for two types of
Kronecker networks (hierarchical community structure and
random) and a Forest Fire network over an observation
window of length T = 10. In terms of precision-recall,
NETRATE outperforms CONNIE and NETINF for all the
synthetic examples in the Pareto sense (Boyd & Vanden-
berghe, 2004). More specifically, if we set CONNIE and
NETINF’s tunable parameters to provide solutions with the
same precision as NETRATE, NETRATE’s recall is always
higher than the other two methods. Strikingly, CONNIE
and NETINF do not achieve NETRATE’s recall for any pre-
cision value. NETRATE outperforms CONNIE with respect
to accuracy for any penalty factor ρ in all the synthetic ex-
amples. It is also more accurate than NETINF for most val-
ues of k (number of edges). Importantly, NETINF and CO-
NNIE yield a curve of solutions from which have to select a
point blindly (or at best heuristically), whereas NETRATE
yields a unique solution without any tuning.

Figure 2 shows the normalized MAE of the estimated trans-
mission rates for the same networks, computed on 5,000
cascades. The normalized MAE is under 25% for almost all
networks and transmission models – surprisingly low given
we are estimating more than 2,000 non-zero real numbers.

NETRATE performance vs. cascade coverage. Observ-
ing more cascades leads to higher precision-recall and more
accurate estimates of the transmission rates. Figure 3(a)
plots the MAE of inferred networks against the number
of observed cascades for a hierarchical Kronecker network
with all three transmission models. Estimating transmis-
sion rates is considerably harder than simply discovering
edges and therefore more cascades are needed for accurate
estimates. As many as 5,000 cascades are required to ob-
tain normalized MAE values lower than 20%.

NETRATE performance vs. time horizon. Intuitively, the
longer the observation window, the more accurately NET-
RATE is able to infer transmission rates. Figure 3(b) con-
firms this intuition by showing the MAE of inferred net-
works for different time horizons T for a hierarchical Kro-
necker with exponential, power-law and Rayleigh transmis-
sion models for 5,000 cascades.

NETRATE running time. Figure 3(c) plots the average
running time to infer rates of all incoming edges to a node
against number of nodes in a network (the number of edges
is twice the number of nodes) on a single CPU. Further
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Figure 3. Panels (a,b) show NETRATE’s normalized MAE vs number of cascades and time horizon respectively for a hierarchical Kro-
necker network with 1,024 nodes and 2,048 edges with exponential (EXP), power-law (POW) and Rayleigh (RAY) transmission models.
Panel (c) plots NETRATE’s average running time to infer rates of all incoming edges to a node against network size (number of nodes)
for a hierarchical Kronecker network.

improvements can be achieved since NETRATE naturally
splits into a collection of subproblems, one per node. A
cluster with 25 CPUs can therefore infer a network with
16,000 nodes (and 32,000 edges) in less than 4 hours.

4.2. Experiments on real data

Dataset description. As in previous work tackling dif-
fusion networks, we use the MemeTracker dataset, which
contains more than 172 million news articles and blog posts
from 1 million online sources. We use hyperlinks between
blog posts to trace the flow of information. A site publishes
a piece of information and uses hyper-links to refer to the
same or closely related pieces of information published by
other sites. These other sites link to still others and so on. A
cascade is thus a collection of time-stamped hyperlinks be-
tween sites (in blog posts) that refer to the same or closely
related pieces of information. We record one cascade per
piece – or closely related pieces – of information. We ex-
tract the top 500 media sites and blogs with the largest num-
ber of documents, 5,000 hyperlinks and 116,234 cascades.

Accuracy on real data. As the ground truth is unknown
on real data, we proceed as follows. We create a network
where there is an edge (u, v) if a post on a site u linked
to a post on a site v. We consider this as the ground truth
network G∗ and we use the hyperlink cascades to infer the
network Ĝ and evaluate how many edges our method esti-
mates properly. We assume an exponential model.

Figure 4 compares our results with NETINF and CONNIE.
As in the synthetic experiments, NETRATE yields a unique
solution whereas the other algorithms produce curves of
solutions. Panel (a) shows that NETRATE performs com-
parably to NETINF and it outperforms CONNIE on preci-
sion and recall. Panel (b) plots accuracy: NETRATE’s out-
performs the other two algorithms on the majority of their
outputted solutions, and almost matches their best perfor-
mances. Since there are no principled methods for choos-

ing single solutions for NETINF and CONNIE, there is no
guarantee that the solutions chosen from the curves will be
anywhere near the highest achievable value.

5. Conclusions
We have developed a flexible model, NETRATE, of the spa-
tiotemporal structure underlying diffusion processes. The
model makes minimal assumptions about the physical, bio-
logical or cognitive mechanisms responsible for diffusion.
Instead, it infers transmission rates between nodes of a net-
work by computing the model that maximizes the likeli-
hood of the observed data – temporal traces left by cas-
cades of infections. Qualitative assumptions about infec-
tions (e.g., are they long-tailed?) determine the choice of
parametric model on the edges. An interesting feature of
NETRATE, to be investigated in future work, is the possi-
bility of mixing exponential, power law, Rayleigh or other
models within a single inference algorithm, thus providing
tremendous flexibility in fitting real data which may com-
bine long-tailed, faddish and other qualitative behaviors.

Remarkably, introducing continuous temporal dynamics,
allowing variable transmission rates across edges, and
avoiding further assumptions dramatically simplified the
problem compared with previous approaches (Gomez-
Rodriguez et al., 2010; Meyers & Leskovec, 2010). The
model has parameters with natural interpretations, and it
leads to a well-defined convex maximum likelihood prob-
lem that can be solved efficiently. Importantly, we do not
need to tune parameters by hand to control the sparsity
of the inferred network (i.e., number of edges to infer or
penalty terms). Heuristic l1-like penalty terms, as the ones
used in Meyers & Leskovec (2010), are unnecessary since
the probabilistic model naturally imposes sparsity.

We evaluated NETRATE on a wide range of synthetic dif-
fusion networks with heterogeneous temporal dynamics
which aim to mimic the structure of real-world social and
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Figure 4. Real data. Precision-recall and accuracy of NETRATE,
NETINF and CONNIE, with an exponential model, on a 500 node
hyperlink network with 5,000 edges using hyperlinks cascades.

information networks. NETRATE provides a unique solu-
tion to the network inference problem with high recall, pre-
cision and accuracy. A direct comparison with the current
state of the art is difficult, since these methods include a
parameter controlling the sparsity of the inferred network
that requires blind tuning. Nevertheless, NETRATE is typ-
ically better in terms of accuracy than previous methods
across the full range of their tunable parameters. In addi-
tion, it accurately estimates transmission rates, which other
methods cannot estimate at all. The performance of CO-
NNIE appears significantly worse than reported in Meyers
& Leskovec (2010); a possible explanation for the degra-
dation is that in our work, we consider networks with het-
erogeneous temporal dynamics. It is surprising how well
NETINF performs in comparison with NETRATE despite
assuming uniform temporal dynamics and priors.

Finally, we evaluated NETRATE on real data. Again, NET-
RATE provides a unique solution to the network inference
problem but in this case, as expected, the values of re-
call, precision and accuracy are modest – adopting a simple
parametric pairwise transmission model is a simplistic as-
sumption on real data. In terms of accuracy, it outperforms
previous methods across a significant part of the full range
of their tunable parameters.

NETRATE provides a novel view of diffusion processes.
We believe it can be fruitfully applied to several lines of
research including influence maximization, control of epi-
demics, and causal inference.
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