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Abstract

Social media and social networking sites have become a global pinboard for exposition and discussion of news,
topics, and ideas, where social media users increasingly form their opinion about a particular topic by learning
information about it from her peers. In this context, whenever a user posts a message about a topic, we observe a noisy
estimate of her current opinion about it but the influence the user may have on other users’ opinions is hidden. In this
paper, we introduce a probabilistic modeling framework of opinion dynamics, which allows the underlying opinion
of a user to be modulated by those expressed by her neighbors over time. We then identify a set of conditions under
which users’ opinions converge to a steady state, find a linear relation between the initial opinions and the opinions
in the steady state, and develop an efficient estimation method to fit the parameters of the model from historical
fine-grained opinion and information diffusion event data. Experiments on data gathered from Twitter, Reddit and
Amazon show that our model provides a good fit to the data and more accurate predictions than alternatives.

1 Introduction
Social media and social networking sites are increasingly used by people to express their opinions, give their “hot
takes”, on the latest breaking news, political issues, sports events, and new products. As a consequence, there has
been an increasing interest on leveraging social media and social networking sites to sense and predict opinions as
well as understand opinion dynamics. For example, political parties routinely use social media to sense people’s
opinion about their political discourse1; quantitative investment firms measure and trade investor sentiment using
social media [17]; and, large corporations increasingly leverage brand sentiment, estimated from users’ posts, likes
and shares in social media and social networking sites, to design their marketing campaigns2. In this context, multiple
methods for sensing opinions, typically based on sentiment analysis [25], have been proposed in recent years [23, 26].
However, methods for predicting opinions are still scarce [6, 7], despite the extensive literature on theoretical models
of opinion dynamics [5, 8].

In this paper, we aim at developing a realistic modeling framework of opinion dynamics that does not only fit
fine grained opinion data from social media and social networking sites, but also provides accurate predictions of the
individual social media users’ opinions over time. To this end, we propose a model that captures two intuitive key
processes driving opinion dynamics: informational influence and social influence. The former process accounts for
the idea that the users may form or update their opinion about a particular topic by learning from the information and
opinions that their friends/neighbors share. It has been one of the main underlying premises used by many well-known
theoretical models of opinion dynamics [5, 8]. The latter process, i.e., social influence, accounts for the impact that
different users have on the activity level in the network. In other words, some users may either express their opinions
more frequently than others, or be more influential and thus trigger a greater number of follow-ups every time they
express their opinion. However, despite its relevance on closely related processes such as information diffusion and
social activity [10, 11, 18], social influence has been surprisingly ignored by models of opinion dynamics [6].

1{http://www.nytimes.com/2012/10/08/technology/campaigns-use-social-media-to-lure-younger-voters.html}
2http://www.nytimes.com/2012/07/31/technology/facebook-twitter-and-foursquare-as-corporate-focus-groups.html
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More in detail, we propose a novel continuous-time modeling framework of opinion dynamics in social networks,
which accounts for both social influence and informational influence. The key idea behind our approach is to model
each user’s opinion as a continuous-time stochastic process, which is modulated over time by the opinions expressed
asynchronously by her neighbors. The proposed formulation also captures characteristic properties of the opinion
dynamics, previously studied in the literature [6], such as stubbornness, conformity and compromise. Furthermore, for
several instances of our modeling framework, we identify the conditions under which opinions converge to a steady
state of consensus or polarization. In such cases, we derive a closed-form expression for the relationship between
the users’ steady state opinions and the initial opinions they start with. We then develop an efficient method to find
the optimal model parameters that jointly maximize the likelihood of an observed set of opinions and information
diffusion events. Finally, we experiment with both synthetic and real data gathered from Twitter, Reddit and Amazon,
and show that our model provides a good fit to the data and more accurate predictions than several state of the art
models of opinion dynamics [6, 7, 8, 13, 28].

Further related work. There is an extensive line of work on theoretical models of opinion dynamics and opinion
formation [1, 2, 5, 8, 13, 15, 28]. However, previous works typically share the following limitations: (i) they do not
distinguish between opinion, which is a latent continuous quantity, and sentiment, which is a noisy (discrete, such
as thumbs up/down, or continuous, such as text sentiment) observation of the opinion; (ii) they do not distinguish
between informational and social influence; (iii) they focus on analyzing only the steady state of the users’ opinion,
neglecting the transient behavior of real opinion dynamics; (iv) their model parameters are difficult to fit from real
fine-grained opinion data and instead are set arbitrarily; and, (v) they consider opinions to be updated sequentially in
discrete time, however, opinions may be updated asynchronously, since opinions are expressed asynchronously [10].
More recently, there have been some efforts on designing models that overcome some of the above limitations and can
be used for prediction [6, 7], however, they do not distinguish between opinion and sentiment nor between information
and social influence, and still consider opinions to be updated sequentially in discrete time. In this work, we introduce
a modeling framework that overcomes the above limitations and, by doing so, achieves more accurate and fine-grained
predictions than alternatives.

2 Proposed Model
In a social network, whenever a user posts a message about a topic, she is revealing a noisy estimate of her current
(hidden) opinion about the topic. Here, we think of users’ opinions as stochastic processes that may evolve over time,
and think of the sentiment users express in each message as noisy samples from these stochastic processes localized
in time. Our modeling framework aims to uncover the evolution of these processes by modeling two key phenomena:
informational influence, by which a user’s message may modulate other users’ opinions, and social influence, by
which a user’s message may trigger additional messages or replies by others. We illustrate both processes in Figure 1.
Next, we formulate our generative model, starting from the data it is designed for.

Given a directed social network G = (V, E), we record each message as e := (u,m, t), where the triplet
means that the user u ∈ V posted a message with sentiment m at time t. Given a collection of messages {e1 =
(u1,m1, t1), . . . , en = (un,mn, tn)}, the historyHu(t) gathers all messages posted by user u up to but not including
time t, i.e.,

Hu(t) = {ei = (ui,mi, ti)|ui = u and ti < t}, (1)

andH(t) := ∪u∈VHu(t) denotes the entire history of messages up to but not including time t.
We represent the users’ opinions as a multidimensional (latent) stochastic process x∗(t), in which the u-th entry,

xu(t) ∈ R, represents the opinion of user u at time t. Here, the sign ∗ means that the opinion x∗u(t) may depend on
the history H(t). Then, every time a user u posts a message at time t, we draw its sentiment m from a sentiment
distribution p(m|x∗u(t)). Further, we represent the message times by a set of counting processes. In particular, we
denote the set of counting processes as a vectorN(t), in which the u-th entry, Nu(t) ∈ {0} ∪ Z+, counts the number
of messages user u posted up to but not including time t. That is, Nu(t) = |Hu(t)| is the size of the history Hu(t).
Then, we can characterize the message rate of the users using their corresponding intensities as

E[dN(t) |H(t)] = λ∗(t) dt, (2)
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Figure 1: Our model of opinion dynamics in social networks. A user has a hidden opinion x∗(t) and every time she
posts a message i at time ti, we observe the sentiment mi expressed in the message, which depends on x∗(ti). When
a user receives messages posted by her in-neighbors, she may update her opinion x∗(t) by means of informational
influence, and may be stimulated to post more messages through social influence. In the above example, user A updates
her opinion, x∗A(t) every time she reads a message posted by user B; and A and C stimulate each other to post more
messages.

where dN(t) := ( dNu(t) )u∈V denotes the number of message events per user in the window [t, t+dt) and λ∗(t) :=
( λ∗u(t) )u∈V denotes the vector of intensities associated to all the users, which may depend on the history H(t).
Moreover, we denote the neighborhood of user u by N (u). Next, we specify the functional form of the intensity
functions λ∗(t), the users’ opinions x∗(t), and the sentiment distribution p(m|x∗u(t)).

Intensity for messages. We leverage the multivariate version of Hawkes processes [22] to model the message inten-
sities, as in a number of recent works [4, 9, 16, 21]. In particular, each intensity λ∗u(t) takes the following form:

λ∗u(t) = µu +
∑

v∈u∪N (u)

bvu
∑

ei∈Hv(t)
κ(t− ti) = µu +

∑

v∈u∪N (u)

bvu (κ(t) ? dNv(t)), (3)

where the first term, µu ≥ 0, models the publication of messages by user u on her own initiative, and the second term,
with bvu ≥ 0, models the publication of additional messages by user u due to social influence, i.e., the influence that
previous messages posted by users that u follows has on her intensity. Here, κ(t) denotes a nonnegative triggering
kernel, which models the decay of social influence over time, and ? denotes the convolution operation.

Stochastic process for opinion. The opinion x∗u(t) of a user u at time t takes the following form:

x∗u(t) = αu +
∑

v∈N (u)

avu
∑

ei∈Hv(t)
mig(t− ti) = αu +

∑

v∈N (u)

avu (g(t) ? (mv(t)dNv(t))), (4)

where the first term, αu ∈ R, models the original opinion a user u starts with, and the second term, with avu ∈ R,
models updates in user u’s opinion due informational influence, i.e., the influence that previous messages with opinions
mi posted by users u follows has on her opinion. Here, g(t) denotes a nonnegative triggering kernel, which models
the decay of informational influence over time, if any.

Importantly, this functional form allows for stubbornness, conformity and compromise, which previous literature
has identified as characteristic properties of opinion dynamics [6]. In particular, stubborn users do not update their
opinions by means of informational influence, and can be characterized by avu = 0 for all v; conforming users’s
opinion do not have an opinion at the beginning, and can be characterized by αu = 0; and compromised users have a
starting opinion that updates over time by means of informational influence, and can be characterized by αu 6= 0 and
avu 6= 0 for some v.

Sentiment distribution. The particular choice of sentiment distribution p(m|x∗u(t)) depends on the recorded data. In
this paper, we allow for both continuous sentiment, m ∈ (−∞,∞), and discrete binary sentiment, m ∈ {−1, 1}, and
consider:

I. Gaussian Distribution The sentiment is assumed to be a real random variable m ∈ R, i.e., p(m|xu(t)) =
N (xu(t), σu).

3



II. Logistic. The sentiment is assumed to be a binary random variable m ∈ {−1, 1}, i.e., p(m|xu(t)) = 1/(1 +
exp(−m · xu(t))).

However, our estimation method in Section 4 can be easily adapted to any log-concave sentiment distribution.

3 Model Properties
In this section we aim to identify under which conditions users’ average opinion, EH(t)[x

∗(t)], converges to a steady
state and, if so, find the steady state opinion limt→∞ EH(t)[x

∗(t)]. Throughout this section (and in Appendices A-E),
we assume the sentiment m ∈ R and the sentiment distribution satisfies that E[m|x∗u(t)] = x∗u(t) (e.g., p(m|x∗u(t)) =
N (x∗u(t), σu)), and we write Ht = H(t) to lighten the notation. Additionally, we denote the eigenvalues of a matrix
X by ξ(X).

Perhaps surprisingly, we can show that the behavior of the average opinion satisfies the following (proven in
Appendix A):

Lemma 1. The average opinion x∗(t) in the model of opinion dynamics defined by Eqs. 3 and 4 with exponential
triggering kernels with parameters ω and ν satisfies the following differential equation:

dEHt [x∗(t)]
dt

= AEHt [x∗(t)� λ∗(t)]− ωEHt [x∗(t)] + ωα, (5)

where A = (avu)v,u∈G , α = [α1, . . . , α|V|]>, and the sign � denotes pointwise product. Moreover, if λ∗u(t) =

µu +
∫ t
0
buuk(t− θ)dNu(θ) for all u ∈ G. Then, Eq. 5 simplifies to:

dEHt [x∗(t)]
dt

= [−ωI +AΛ(t)]EHt [x∗(t)] + ωα, (6)

where

Λ(t) = diag[EHt [λ
∗(t)]], and

EHt [λ
∗(t)] =

[
e(B−νI)t + ν(B − νI)−1

(
e(B−νI)t − I

) ]
µ,

where B = diag[[b11, . . . , b|V||V|]>], µ = [µ1, . . . , µ|V|]>, and diag[x] is a diagonal matrix with the elements of
vector x in the diagonal.

A general analysis of convergence using Eq. 5 is, in general, difficult. Here, we consider three particular instances
of our model under which such convergence analysis is feasible and then discuss the implications of our results at the
end of this section.

I. Poisson intensity. Consider bvu = 0 for all v, u ∈ G, i.e., user’s messages follow a Poisson process with rate
λ∗u(t) = µu. Then, the average opinion EHt [x∗(t)] and the steady state average opinion limt→∞ EHt [x∗(t)] are given
by (proven in Appendices B and C):

Theorem 2. Given the conditions of Lemma 1 and λ∗u(t) = µu for all u ∈ G, then,

EHt [x∗(t)] =
[
e(AΛ1−ωI)t + ω(AΛ1 − ωI)−1

(
e(AΛ1−ωI)t − I

) ]
α, (7)

where Λ1 = diag[µ].

Theorem 3. Given the conditions of Theorem 2, if Re[ξ(AΛ1)] < ω, then,

lim
t→∞

EHt [x∗(t)] =

(
I − AΛ1

w

)−1
α. (8)
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II. Univariate Hawkes intensities. Consider bvu = 0 for all v, u ∈ G, v 6= u, i.e., λ∗u(t) = µu+
∫ t
0
buuk(t−θ)dNu(θ).

Then, the steady state average opinion limt→∞ EHt [x∗(t)] is given by (proven in Appendix D):

Theorem 4. Given the conditions of Lemma 1 and λ∗u(t) = µu+
∫ t
0
buuk(t−θ)dNu(θ) for all u ∈ G. If the transition

matrix Φ(t) associated to the time-varying linear system described by Eqs. 6 satisfies that ||Φ(t)|| ≤ γe−ct ∀t > 0,
where γ, c > 0, then,

lim
t→∞

EHt [x∗(t)] =

(
I − AΛ2

ω

)−1
α, (9)

where Λ2 = diag
[
I − B

ν

]−1
µ.

III. Stubborn users. Consider x∗v(t) = αv for all v ∈ G\{u} and x∗u(t) is given by Eq. 4, i.e., all users except
u are stubborn [27]. Then, the steady state average opinion of user u, limt→∞ EHt [x∗u(t)], is given by (proven in
Appendix E):

Theorem 5. Consider the model of opinion dynamics defined by Eq. 3 and 4 but assume that x∗v(t) = αv for all
v ∈ G\{u}. Then, if Re[ξ(B)] < ν,

lim
t→∞

EHt [x∗u(t)] = α+
ν

ω
AT
u∗ diag[α][νI −B]−1µ, (10)

whereAu∗ denotes the u-th row ofA andB = (bvu)v,u∈G .

Implications. The above results do not only identify the conditions that ensure the existence of a steady state average
opinion (I:Re[ξ(AΛ1)] < ω; II: ||Φ(t)|| ≤ γe−ct; and III:Re[ξ(B)] < ν) but also provide a closed-form expression
for its value (Eq. 8–10). Therefore, these results establish the foundations to investigate consensus and polarization
in arbitrary networks as well as carrying out opinion shaping [9], which are very interesting venues for future work.
Additionally, if the user message times are Poisson, Theorem 2 allows for a fine grained analysis of the temporal
evolution of average opinions over time, as illustrated in Figure 3.

4 Model Parameter Estimation
Given a collection of messages H(T ) = {(ui,mi, ti)} recorded during a time period [0, T ) in a social network
G = (V, E), our goal is to find the optimal parameters α, µ, A and B by solving a maximum likelihood estimation
(MLE) problem. To this end, it is easy to show that the log-likelihood of the messages is given by

L(α,µ,A,B) =
∑

ei∈H(T )

log p(mi|x∗ui(ti))

︸ ︷︷ ︸
message sentiments

+
∑

ei∈H(T )

log λ∗ui(ti)−
∑

u∈V

∫ T

0

λ∗u(τ) dτ

︸ ︷︷ ︸
message times

. (11)

Then, we can find the optimal parameters (α,µ,A,B) using maximum likelihood estimation (MLE) as

maximize
α,µ≥0,A,B≥0

L(α,µ,A,B). (12)

Note that, as long as the sentiment distributions are log-concave, the MLE problem above is concave and thus can be
solved efficiently. Moreover, the problem decomposes in 2|V| independent problems, two per user u, since the first
term in Eq. 11 only depends on (α,A) whereas the last two terms only depend on (µ,B), and thus can be readily
parallelized. The global optimum can be found by many algorithms. Here, in order to find (µ∗,B∗), we use spectral
projected gradient descent [3], which we found that work well in practice. For finding (α∗,A∗), we used a standard
logistic regressor solver for logistic sentiment distributions, and a standard least-square solver for Gaussian sentiment
distributions.
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Figure 2: Performance of model estimation for several 512-node kronecker networks in terms of mean squared er-
ror (MSE) between estimated and true parameters. As we feed more messages into the estimation procedure, the
estimation becomes more accurate.

5 Experiments
We validate our model using both synthetic and real data gathered from Twitter, Reddit and Amazon. We first use
synthetic data to show that our model is able to produce opinion dynamics that converge to a steady state of consensus
and polarization, and our estimation method can accurately recover the true model parameters from recorded messages
using synthetic data. We then use real data to show that our model can accurately predict users’ opinions, significantly
outperforming five state of the art methods [6, 7, 8, 13, 28], and uncover users’ opinions coevolution. Appendices F
and G provide additional experimental results.

5.1 Experiments on synthetic data

Model parameters estimation. Here, we evaluate the accuracy of our model estimation procedure, described in
Section 4. To this end, we generate three types of synthetic networks using a well-known model of directed social net-
works, the Kronecker graph model [19]: i) Homophily/assortative networks with (parameter matrix [0.96, 0.3; 0.3, 0.96]);
ii) heterophily/dissortative networks (parameter matrix [0.3, 0.96; 0.96, 0.3]); and iii) core-periphery networks (pa-
rameter matrix [0.9, 0.5; 0.5, 0.3]). For each network, we draw the parameters µ and B from a uniform distribution
U(0, 1), and the opinion parametersα andA from a Gaussian distributionN (µ = 0, σ = 1). We use exponential ker-
nels with parameters ω = 100 and ν = 1, respectively, for opinions x∗u(t) and intensities λ∗(t), and experiment both
with logistic and Gaussian sentiment distributions. We simulate from the model adapting an efficient implementation
of Ogata’s algorithm [24]. We evaluate the accuracy of our model estimation procedure in terms of mean squared
error (MSE), between the estimated parameters (x̂) and the true parameters (x), i.e., E[(x− x̂)2]. Figure 2 shows that
as we feed more messages into the estimation procedure, the estimation becomes more accurate. Note that the MSE
for (α,A) is larger than for (µ,B) because aji ∈ (−∞,∞) while bji ∈ (0, 1). Appendix F contains additional
experiments using Forest Fire networks [20].

Consensus and polarization. In Section 3, we provided closed-form expressions of the steady state average opinion
for several instances of our model. Here, we verify those results empirically by simulating our model on three different
small networks using Gaussian sentiment distribution and Poisson intensities, i.e., λ∗u(t) = µu, µ ∼ U(0, 1). Figure 3
summarizes the results, which show that (i) the theoretical average opinions given in Eq. 7 closely match the empirical
estimates and, (ii) our model is able to produce opinion dynamics that converge to negative consensus (G1), positive
consensus (G2) and polarization (G3).

5.2 Experiments on real data

Data description. We experimented with four Twitter datasets about current real-world events (Tw: Politics, Tw:
Movie, Tw: Fight and Tw: Bollywood), which we gathered in-house, a dataset gathered from Amazon3 (Amzn: food)

3https://snap.stanford.edu/data/web-FineFoods.html
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Figure 3: Opinion dynamics on three 50-node networks G1 (top), G2 (middle), G3 (bottom). The first column shows
the temporal evolution of the theoretical and empirical average opinions (in the third row, we compute the average
separately for positive and negative opinions in the steady state). The second column shows the polarity of theoretical
average opinion per user over time. The three right columns show three snapshots of the opinions in the networks at
different times. The number of nodes with positive opinion (in red) and negative opinion (in blue) at time t = 0 is the
same in all networks, however, at t→∞, G1 reaches positive consensus, G2 reaches negative consensus and G3 gets
uniformly polarized, due to their model parameter values and network structure. In all three networks, the sentiment
distributions are Gaussian and the intensities are Poisson.

and a dataset gathered from Reddit (Reddit) [7]. Statistics about these datasets are shown in Table 1. Appendix F
contains more detailed information about the way the Twitter datasets are build as well as a description of the current
real-world events they correspond to.

Experimental setup. For each recorded message i, our model requires its timing ti, which is already explicit in the
above datasets, and sentiment value mi, which we compute as follows. For the Twitter datasets, we compute each
message sentiment mi using a popular sentiment analysis toolbox, specially designed for Twitter [12], which returns
values in (−1, 1). For the Amazon and Reddit datasets, we compute each message sentiment mi using a popular
sentiment analysis toolbox, LIWC4, which returns values in (−1, 1). We consider the sentiment polarity to be simply
sign(m).

The Amazon and Reddit datasets do not explicitly provide a social network, which we build as follows. For the
Amazon dataset, we assume two users follow each other if they have posted at least 15 reviews on the same type of
food. For the Reddit dataset, we assume a user v follows a user u if v has posted a message within a week after u

4http://www.liwc.net/
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Dataset Nodes, |V| Edges, |E| Msgs, |H(T )| E[m] std[m]

Tw: Politics 548 5271 20026 0.0169 0.1780
Tw: Movie 567 4886 14016 0.6969 0.1358
Tw: Fight 848 10118 21526 -0.0123 0.2577
Tw: Bollywood 1031 34952 46845 0.5101 0.2310
Amzn: Food 447 13498 24815 0.2108 0.1648
Reddit 556 4629 64,366 -0.0088 0.1333

Table 1: Real datasets statistics

Dataset HGOM AsLM DeGroot Voter Bias. Voter Flocking
Tw: Politics 0.0344 0.0557 0.1557 0.0761 0.0549 0.0782
Tw: Movie 0.0482 0.1123 0.2868 0.5606 0.1135 0.5702
Tw: Fight 0.0373 0.0549 0.0714 0.098 0.0670 1.0341
Tw: Bollywood 0.0825 0.1704 0.2889 0.3787 0.1470 0.3443
Amz: Food 0.0593 0.0791 0.1567 0.1008 0.0781 0.0968
Reddit 0.0723 0.1083 0.1465 0.1842 0.0869 0.1853

(a) Mean squared error (MSE) on sentiment value prediction. The sentiment value m ∈ (−1, 1).

Dataset HGOM AsLM DeGroot Voter Biased Voter Flocking
Tw: Politics 0.0539 0.1389 0.1643 0.1938 0.1214 0.2148
Tw: Movie 0 0 0 0 0 0
Tw: Fight 0.0507 0.0669 0.1125 0.1552 0.1004 0.2844
Tw: Bollywood 0.0457 0.0470 0.0472 0.0942 0.0540 0.0914
Amz: Food 0.0891 0.0988 0.1142 0.1104 0.1023 0.3087
Reddit 0.0065 0.0720 0.0871 0.1389 0.0476 0.1418

(b) Failure rate (FR) on sentiment polarity prediction. The sentiment polarity sign (m) ∈ {−1, 1}.

Table 2: Sentiment prediction performance using a 10% held-out set for each dataset.

posted a message in the same Reddit group.

Sentiment prediction. For each dataset, we first estimate the parameters of our model, which we denote as HGOM,
using messages from a training set (90% of the messages). Since the message sentimentm ∈ (−1, 1), we use Gaussian
sentiment distributions. Moreover, κ(t) and g(t) are exponential triggering kernels, with decay parameters set by cross-
validation. Then, we predict the sentiment value m for each message in a held-out set (10% of the messages) using
the trained HGOM model, and compare its performance with five state of the art opinion models: the asynchronous
linear model (AsLM) [7], DeGroot’s model [8], the voter model [28], the biased voter model [6], and the flocking
model [13]. Here, we evaluate the performance by (i) computing the mean squared error (MSE) between the true
(m) and the estimated (m̂) sentiment value for all messages in the held-out set, i.e., E[(m− m̂)2], and (ii) computing
the failure rate, defined as the probability that the true polarity sign (m) and the estimated polarity sign (m̂) do not
coincide, i.e., P(sign(m) 6= sign(m̂)). Table 2 summarizes the results, using a 10% held-out set for each dataset. Our
method consistently outperforms alternatives both in predicting sentiment polarity and sentiment value.

Then, we train our model, using also Gaussian sentiment distribution, for different training (held-out) set sizes and
compare its performance with DeGroot’s model and AsLM. Figure 4 summarizes the results, which show that our
model outperforms competing methods for any training size and always benefit from increasing the training sets, in
contrast with competing methods, which sometimes degrade its performance. Here, we only compare with DeGroot’s
model and AsLM since the other methods do not need to be trained since they base their predictions simply on previous
events.

Finally, we investigate the predictive performance of our model for discrete-valued sentiment messages. To this
end, for the Twitter and Reddit datasets, we only record the polarity of the sentiment provided by [12] and LIWC
respectively; and for the Amazon dataset, since the sentiment provided by LIWC has almost always positive polarity,
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Figure 4: Mean squared error (MSE) on sentiment value prediction against training set size for all datasets gathered
from Twitter. Appendix G shows similar trends for Amazon Food and Reddit.
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Figure 5: Opinion dynamics. Panels (a, b) show that user A’s opinion, x∗A(t) (in black), co-evolves with user B’s
opinion, x∗B(t) (in green), and user C’s opinion, xC(t) (in red). Panels (c, d) show that user A’s opinion x∗A(t) (in
black) is updated by means of informational influence every time user B (in green) and C (in red) post a message with
a sentiment m.

we consider all the review (message) scores equal to 5 (52.6% of the total ratings) to be positive, while scores below
5 are considered negative.

For each dataset, we first estimate the parameters of our model using messages from a training set (90% of the
messages). In this case, since we only record sentiment polarity, we use logistic sentiment distributions, and denote
our model as HLOM. We then compare our model with the Voter model in terms of sentiment polarity prediction.
Table 3 summarizes the results, where we observe that our model outperforms the Voter model for all the datasets
except for the “Tw: Movie”, in which all the sentiments are positive and both models achieve the same perfect score.

Opinions co-evolution and informational influence. Figure 5 visualizes the opinions x∗(t), as inferred by our model,
for a user (A, in black) and two of the users she follows (B, in green; C, in red), picked at random. Here, it is apparent
that users’ opinions coevolve by means of informational influence and the users in red and green exert informational
influence over the user in black. In particular, every time users B and C post a message with a sentiment m, user A
updates her opinion, as shown in Panels (c, d). Here, note that user A also updates her opinion when additional people
she follows, which we do not show in the figure, post messages. For clarity, we show only three nodes, however, we
found qualitatively similar results across nodes.

6 Conclusions
We proposed a continuous-time modeling framework of opinion dynamics, naturally designed to fit fine-grained opin-
ion data. The key innovation of our framework is distinguishing latent opinions from expressed opinions, and account-
ing for both informational and social influence. As a result, it predicts expressed opinions over time more accurately
than previous state-of-the-arts. Our proposed model opens up many interesting venues for future work. For exam-
ple, a general analysis of convergence in our model would be of great interest, since it would allow us to investigate
the effect of complex communication patterns on the emergence of consensus and polarization. Moreover, it would
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Dataset HLOM Voter
Tw: Politics 0.4565 0.4820
Tw: Movie 0 0
Tw: Fight 0.1966 0.2558
Tw: Bollywood 0.0085 0.0602
Amz: Food 0.1092 0.1231
Reddit 0.2190 0.3770

Table 3: Failure rate (FR) on sentiment polarity prediction using a 10% held-out set for each dataset. Here, HLOM
and Voter only have access to the sentiment polarities to make predictions.

be interesting to leverage our framework to design opinion shaping algorithms and reason about large-scale opinion
dynamics in large datasets.
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A Proof of Lemma 1
Using that E[mv(θ)|x∗v(θ)] = x∗v(θ), we can compute the average opinion of user u across all possible histories from
Eq. 4 as

EHt [x∗u(t)] = αu +
∑

v∈N (u)

auv

∫ t

0

g(t− θ)EHt [mv(θ)dNv(θ)]

= αu +
∑

v∈N (u)

auv

∫ t

0

g(t− θ)EHθ
[
x∗v(θ)λ

∗
v(θ)

]
dθ,

and we can write the expectation of the opinion for all users in vectorial form as

EHt [x∗(t)] = α+A

∫ t

0

g(t− θ)EHθ [x∗(θ)� λ∗(θ)]dθ, (13)

where the sign � denotes pointwise product. Then, by differentiating Eq 13, we obtain

dEHt [x∗(t)]
dt

= AEHt [x∗(t)� λ∗(t)]− ωEHt [x∗(t)] + ωα. (14)

Now, assume bvu = 0 for all v, u ∈ G, v 6= u. Then, λ∗v(t) only depends on user v’s history and, since x∗v(t) only
depends on the history of the user v’s neighbors N (v), we can write

EHt [x∗(t)� λ∗(t)] = EHt
[
x∗(t)

]
� EHt

[
λ∗(t)

]
,

and rewrite Eq. 14 as

dEHt [x∗(t)]
dt

= A(EHt [x∗(t)]� EHt [λ
∗(t)])− ωEHt [x∗(t)] + ωα. (15)

We can now compute EHt [λ
∗(θ)] analytically as follows. From Eq. 3, we obtain

EHt
[
λ∗(t)

]
= µ+

∫ t

0

Bκ(t− θ)EHθ
[
λ∗(θ)

]
dθ, (16)

where µ = [µ1, µ2, ..., µ|V|]> and B = (bvu)v,u∈V , where bvu = 0 for all v 6= u, by assumption. Then, we apply the
Laplace transform and obtain

λ̂(s) = [I −Bκ̂(s)]−1µ, (17)

where λ̂(s) and κ̂(s) denote the Laplace transforms of EHt [λ
∗(t)] and κ(t) respectively. Now, using that κ(t) =

exp(−νt), we can write

λ̂(s) =
[
I − B

s+ ν

]−1
µ,

and obtain EHt [λ
∗(t)] in time domain as

EHt [λ
∗(t)] =

[
e(B−νI)t + ν(B − νI)−1

(
e(B−νI)t − I

) ]
µ. (18)

Finally, using Eq. 15, Eq. 18, and EHt [x∗(t)]�EHt [λ
∗(t)] = Λ(t)EHt [x∗(t)], where Λ(t) := diag[EHt [λ

∗(t)]],
we obtain

dEHt [x∗(t)]
dt

= [−ωI +AΛ(t)]EHt [x∗(t)] + ωα. (19)
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B Proof of Theorem 2
Using Lemma 1 and λ∗u(t) = µu, we obtain

dEHt [x∗(t)]
dt

= [−ωI +AΛ]EHt [x∗(t)] + ωα, (20)

where Λ(t) = diag[µ]. Then, we apply the Laplace transform to the expression above and obtain

x̂(s) =
(

1 +
ω

s

)
[sI + ωI −AΛ]−1α.

Finally, applying the inverse Laplace transform, we obtain the average opinion EHt [x∗(t)] in time domain as

EHt [x∗(t)] =
[
e(AΛ−ωI)t + ω(AΛ− ωI)−1

(
e(AΛ−ωI)t − I

) ]
α.

C Proof of Theorem 3
Theorem 2 states that the average users’ opinion EHt [x∗(t)] in time domain is given by

EHt [x∗(t)] =
[
e(AΛ−ωI)t + ω(AΛ− ωI)−1

(
e(AΛ−ωI)t − I

) ]
α.

If Re[ξ(AΛ)] < ω, where ξ(X) denote the eigenvalues of matrixX , it easily follows that

lim
t→∞

EHt [x∗(t)] =

(
I − AΛ

w

)−1
α. (21)

D Proof of Theorem 4
Lemma 1 states that

dEHt [x∗(t)]
dt

= [−ωI +AΛ(t)]EHt [x∗(t)] + ωα, (22)

where Λ(t) =
[
e(B−νI)t + ν(B − νI)−1

(
e(B−νI)t − I

) ]
µ. In such systems, solutions can be written as [14]

EHt [x∗(t)] = Φ(t)α+ ω

∫ t

0

Φ(s)αds, (23)

where the transition matrix Φ(t) defines as a solution of the matrix differential equation

Φ̇(t) = [−ωI +AΛ(t)]Φ(t) with Φ(0) = I.

If Φ(t) satisfies ||Φ(t)|| ≤ γe−ct ∀t > 0 for γ, c > 0 then the steady state solution to Eq. 23 is given by [14]

lim
t→∞

EHt [x∗(t)] =

(
I − AΛ

ω

)−1
α.

where Λ = limt→∞Λ(t) = diag
[
I − B

ν

]−1
µ.
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E Proof of Theorem 5
By assumption, EHt [mv|xv(t)] = αv for all v ∈ G\{u}. Then, the expected opinion of node u at time t is given by

EHt [x∗u(t)] = αu +
∑

v∈V
auvαv

∫ t

0

g(t− θ)EHθ [λ∗v(θ)]dθ. (24)

Next, we will compute the Laplace transform of the above expression. We start by writing the average intensity
for all users in vectorial form as

EHt [λ
∗(t)] = µ+

∫ t

0

Bκ(t− θ)EHθ [λ∗(θ)]dθ, (25)

and then apply the Laplace transform and obtain,

λ̂
∗
(s) = [I −Bκ̂(s)]−1

µ

s
(26)

where κ̂(s) is the Laplace transform of the exponential kernel κ(t) = exp(−νt). Using Eq. 24 and Eq. 26, the Laplace
transform of EHt [x∗u(t)] is given by

x̂u(s) =
αu
s

+AT
u∗ diag[α]g(s)λ̂

∗
(s), (27)

whereAu∗ is the uth row ofA. Assuming an exponential kernel g(t) = exp(−ωt) and substituting µ̂(s), we obtain

x̂u(s) =
α

s
+AT

u∗ diag[α]
s+ ν

s+ ω
[sI + νI −B]−1

µ

s
. (28)

Then, if Re[ξ(B)] < ν, it easily follows that

lim
t→∞

EHt [x∗u(t)] = α+
ν

ω
AT
u∗ diag[α][νI −B]−1µ. (29)
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F Additional experiments on synthetic data

Parameter estimation. We evaluate the accuracy of our model estimation procedure, described in Section 4, in the
same Kronecker networks as in Section 5.1 in terms of log-likelihood over a test set of messages, disjoint from the set
of messages used for model estimation. Figure 6 shows that as we feed more messages into the estimation procedure,
the test log-likelihood achieved by the estimated parameters becomes closer to the test log-likelihood achieved by the
true parameters.
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Figure 6: Performance of model estimation for several 512-node kronecker networks in terms of test log-likelihood.
As we feed more messages into the estimation procedure, the estimation becomes more accurate. In all three networks,
we used pb = 0.3.

Additionally, we evaluate the accuracy of our model estimation procedure in Forest-Fire networks [20]. Figure 7
summarizes the results. We also observe that as we feed more messages into the estimation procedure, the mean
squared error (MSE) becomes smaller and the test log-likelihood achieved by the estimated parameters becomes closer
to the test log-likelihood achieved by the true parameters.
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Figure 7: Performance of model estimation for several 512-node Forest-Fire networks in terms of test log-likelihood.
As we feed more messages into the estimation procedure, the estimation becomes more accurate
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Figure 8: Mean squared error (MSE) on sentiment value prediction against training set size for the Amazon and Reddit
datasets.

G Additional experiments on real data

G.1 Twitter dataset description
We used the Twitter search API5 to collect all the tweets (corresponding to a 2-3 weeks period around the event date)
that contain hashtags related to the following events/topics:
• Politics: Similarly to [7], we collect all the tweets, from 9th to 15th of December 2013, related to the Delhi

Assembly election 2013.
• Movie: We collect all the tweets, from April 28th to May 5th, 2015, about the discussion on the release of

“Avengers: Age of Ultron” movie that took place on May 1, 2015.
• Fight: We collect all the tweets, from April 29th to May 7th, 2015, about the discussion on the professional

boxing match between the eight-division world champion Manny Pacquiao and the undefeated five-division
world champion Floyd Mayweather Jr., which took place on May 2, 2015 in Las Vegas, Nevada.

• Bollywood: We collect all the tweets, from May 5th to 16th, 2015, about the discussion on the verdict that
declared guilty to Salman Khan (a popular Bollywood movie star) on May 6, 2015, for causing death of a person
by rash and negligible driving

We then built the follower-followee network for the users that posted the collected tweets using the Twitter rest API6.
Finally, we filtered out users that posted less than 200 tweets during the account lifetime, follow less than 100 users,
or have less than 50 followers.

G.2 Additional results for sentiment value prediction
Here, we compare the performance of our model with DeGroot’s model and AsLM for the Amazon and Reddit datasets
in terms of sentiment value prediction against training set size. Figure 8 summarizes the results, which show that our
model improves its performance when increasing the training set and outperforms the competing methods for any
training size.

5https://dev.twitter.com/rest/public/search
6https://dev.twitter.com/rest/public
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