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Why such a class?

• Companies are an ever growing opportunity for ML researchers

• Academics know about the publications of  these companies

• ...but not about the less academically-visible research



A new zoology of  problems

• Most academic literature is about predictive performance

• What about:

• Optimisation of  decision-making?

• Increasing operational efficiency?

• Predictive performance under operational constraints?



The 3 stages of  the academia      industry move

1. I will use model X which will greatly improve the results (enthusiasm)

2. No new model is useful, this is pointless (disillusionment)

3. So many open questions, I do not know where to start (acceptance)



Criteo – an example amongst many

• We buy advertising spaces on websites

• We display ads for our partners

• We get paid if  the user clicks on the ad



226 200 250 250

81 36 12
100

40 60 26

640

100 120

520

226 226

526

776

1026 1026
1147

1883
1983 1983

2141

2661

0

500

1000

1500

2000

2500

3000

Cluster NL PreProd Cluster FR TOTAL NODES



Retargeting – an example



In practice

1. A user lands on a webpage

2. The website Criteo and its competitors

3. It is an auction: each competitor tells how much it bids

4. The highest bidder wins the right to display an ad



Details of  the auction

• Real-time bidding (RTB)

• Second-price auction: the winner pays the second highest price

• Optimal strategy: bid the expected gain

• Expected gain = price per click (CPC) * probability of  click (CTR)



What to do once we win the display?

• We are now directly in contact with the website

• Choose the best products

• Choose the color, the font and the layout



Identified ML problems

• Prediction problem: click/no click

• Recommendation problem: find the top products



What is the input?

• The list of  data we can collect about the user and the context

• Time since last visit, current URL, etc.

• There is potentially no limit to the number of  variables in X



Choosing a model class

• Response time is critical

• There is little signal to predict clicks: we need to add features often

• Solution: a logistic regression - pCTR = 𝜎 𝑤𝑇𝑥



A major difference

Structured data

• Lots of  info in the data

• High predictability

• Highly structured info

Unstructured data

• Poor predictability

• Signal dominated by noise

• Highly unstructured info



Dealing with many modalities

• Some variables can take many different values

• CurrentURL

• List of  articles read

• List of  items seen



Idea 1: one-hot encoding + dictionary

• Associate each entry with an index i

• x = [ 0 0 0 ... 0 1 0 ... 0 0]
0     1    2  i (P-2) (P-1)



Idea 1: one-hot encoding + dictionary

• Associate each entry with an index i

• x = [ 0 0 0 ... 0 1 0 ... 0 0]

• pCTR = 𝜎 𝑤𝑇𝑥 = 𝜎 𝑤𝑖

0     1    2  i (P-2) (P-1)



Building a dictionary

i URL 𝒘𝒊

0 http://google.com -1.2

1 http://facebook.com -3.4

…

…

129547171991 http://thiswebsiteisgreat.com -0.5



Building a dictionary

i URL 𝒘𝒊

0 http://google.com -1.2

1 http://facebook.com -3.4

…

…

129547171991 http://thiswebsiteisgreat.com -0.5

129547171992 http://thisoneisevenbetter.com -0.45



Idea 2: using a hash table

i 𝒘𝒊

0 -1.7

1 -2.1

…

…

…

16777215 -1.2

• h: 𝑆 → [0, 2𝑘 − 1]

• h("http://google.com")=14563



Idea 2: using a hash table

i 𝒘𝒊

0 -1.7

1 -2.1

…

14563 -1.23

…

16777215 -1.2

• h: 𝑆 → [0, 2𝑘 − 1]

• h("http://google.com")=14563



Collisions

• What if  h 𝑆0 = h 𝑆1 ?

• We will use the same wi for both.

• This is called a collision.



Collisions in practice

• h("http://google.com") = h("http://nicolas.le-roux.name")=14563

• pCTR("http://google.com")= pCTR("http://nicolas.le-roux.name")

≈ CTR("http://google.com")



Example of  a hash

• Current URL = http://gobernie.com/

• ℎ("http://gobernie.com/") = 12

• 𝑥 = 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0     1    2    3    4     5    6    7     8    9   10   11  12 13  14  15



Example of  a hash

• Current URL = http://gobernie.com/ and Advertiser = S&W

• ℎ("http://gobernie.com/") = 12 , h(" S&W ") = 4

• 𝑥 = 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0     1    2    3    4 5    6    7     8    9   10   11  12 13  14  15



Limitations of  the linear model

• 𝑥 = 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

• pCTR = 𝜎 𝑤𝑇𝑥 =
1

1+ 𝑒−𝑤
𝑇𝑥
≈ 𝑒𝑤

𝑇𝑥 =  𝑖 𝑒𝑤𝑖𝑥𝑖



Introducing cross-features

• Current URL = http://gobernie.com/ and Advertiser = S&W

• ℎ("http://gobernie.com/" and " S&W ") = 6

• 𝑥𝑐𝑓 = 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0     1    2    3    4 5    6 7     8    9   10   11  12 13  14  15



Cross-features as a second-order method

• 𝑥 = 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

• 𝑥𝑐𝑓 = 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0



Cross-features as a second-order method

• 𝑥 = 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

• 𝑥𝑐𝑓 = 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

•𝑤𝑇𝑥𝑐𝑓 =  𝑖 𝑤𝑖𝑥𝑖



Cross-features as a second-order method

• 𝑥 = 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

• 𝑥𝑐𝑓 = 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

•𝑤𝑇𝑥𝑐𝑓 =  𝑖 𝑤𝑖𝑥𝑖 +  𝑖,𝑗𝑤𝑖𝑗𝑥𝑖𝑥𝑗



Cross-features as a second-order method

• 𝑤𝑇𝑥𝑐𝑓 =  𝑖 𝑤𝑖𝑥𝑖 +  𝑖,𝑗𝑤𝑖𝑗𝑥𝑖𝑥𝑗

• 𝑤𝑇𝑥𝑐𝑓 = 𝑤𝑇𝑥 + 𝑥𝑇𝑀𝑥

The values in M are the same as those in w!



A matrix view of  cross-features

2.3 1.1 3.7 -3.0 1.1 2.3

-1.4 2.3 -3.0 3.7 -1.4 3.7

-3.0 -3.0 5.9 1.1 2.3 5.9

3.7 5.9 -1.4 1.1 -3.0 -1.4

-1.4 2.3 -1.4 -1.4 3.7 5.9

-3.0 1.1 1.1 5.9 5.9 5.9

M=

• pCTR = 𝜎 𝑥𝑇𝑀𝑥
The structure is 

determined by the 

hashing function



Exploiting the magic

"Thanks to hashing, the number of  parameters in the 

model is independent of  the number of  variables. This 

means we should add as many variables as possible."



Reasons to NOT do that

• Because of  collisions, adding variables may decrease performance

• Any variable needs to be computed and stored



The cost of  adding variables

• « Hey, I thought of  this great variable: Time since last product view. Can 

we add it to the model? »

• Storage: #Banners/day x #Days x 4 = 480GB

• RAM: #Users x #Campaigns x 4 = 40GB



Feature selection

• How to keep features while maintaining good performance?A tool to 

increase statistical efficiency

• Solution: selection of  the optimal features and cross-features



Using sparsity-inducing regularizers

• min
𝑤

 𝑖 𝑙(𝑤, 𝑥𝑖 , 𝑦𝑖)



Using sparsity-inducing regularizers

• min
𝑤

 𝑖 𝑙(𝑤, 𝑥𝑖 , 𝑦𝑖) + 𝜆 𝑤 1

• Statistically efficient

• Still requires to extract all variables



Using group-sparsity regularizers

• min
𝑤

 𝑖 𝑙(𝑤, 𝑥𝑖 , 𝑦𝑖) + 𝜆 ℊ 𝑤ℊ 2

• Forces all elements in a group to be 0

• The optimization problem remains efficient

R. Jenatton, J.-Y. Audibert and F. Bach. Structured Variable Selection with Sparsity-Inducing Norms. Journal of  Machine Learning Research



Reducing bias

• Sparsity-inducing regularization introduces bias

• Two-stage process:

• Select subset of  variables

• Re-optimize with the selected subset



Feature selection as kernel selection

• 𝑤𝑇𝑥𝑐𝑓 = 𝑤𝑇𝑥 + 𝑥𝑇𝑀𝑥

• Doing feature selection on M is equivalent to learning the kernel



ML improves human efficiency

• Adding features is a critical part of  an R&D

• Doing it automatically and well spares valuable people's time



Factorization machines

2.3 1.1

-1.4 2.3

-3.0 -3.0

3.7 5.9

-1.4 2.3

-3.0 1.1

M=

• pCTR = 𝜎 𝑥𝑇𝑀𝑥

2.3 -1.4 -3.0 3.7 -1.4 -3.0

1.1 2.3 -3.0 5.9 2.3 1.1

Rendle, S. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th International Conference on (pp. 995-1000). IEEE.



Factorization machines

• 𝜙 𝑤, 𝑥 = 𝑤𝑇𝑥

• 𝜙 𝑀, 𝑥 = 𝑥𝑇𝑀𝑥

• 𝜙 𝑈, 𝑥 = 𝑥𝑇𝑈𝑈𝑇𝑥



Linear model

gobernie.com drumpf4ever.com hillaryous.com

S&W f(𝑤𝑏𝑒𝑟𝑛𝑖𝑒 + 𝑤𝑆&𝑊) f(𝑤𝑑𝑟𝑢𝑚𝑝𝑓 + 𝑤𝑆&𝑊) f(𝑤ℎ𝑖𝑙𝑙𝑎𝑟𝑦 + 𝑤𝑆&𝑊)

Carebear f(𝑤𝑏𝑒𝑟𝑛𝑖𝑒 + 𝑤𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟) f(𝑤𝑑𝑟𝑢𝑚𝑝𝑓 + 𝑤𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟) f(𝑤ℎ𝑖𝑙𝑙𝑎𝑟𝑦 + 𝑤𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟)

JP Morgan f(𝑤𝑏𝑒𝑟𝑛𝑖𝑒 +𝑤𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛) f(𝑤𝑑𝑟𝑢𝑚𝑝𝑓 +𝑤𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛) f(𝑤ℎ𝑖𝑙𝑙𝑎𝑟𝑦 +𝑤𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛)



Level 2 cross-features

gobernie.com drumpf4ever.com hillaryous.com

S&W f(𝑤𝑏𝑒𝑟𝑛𝑖𝑒,𝑆&𝑊) f(𝑤𝑑𝑟𝑢𝑚𝑝𝑓,𝑆&𝑊) f(𝑤ℎ𝑖𝑙𝑙𝑎𝑟𝑦,𝑆&𝑊)

Carebear f(𝑤𝑏𝑒𝑟𝑛𝑖𝑒,𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟) f(𝑤𝑑𝑟𝑢𝑚𝑝𝑓,𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟) f(𝑤ℎ𝑖𝑙𝑙𝑎𝑟𝑦,𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟)

JP Morgan f(𝑤𝑏𝑒𝑟𝑛𝑖𝑒,𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛) f(𝑤𝑑𝑟𝑢𝑚𝑝𝑓,𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛) f(𝑤ℎ𝑖𝑙𝑙𝑎𝑟𝑦,𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛)



Factorization machines

gobernie.com drumpf4ever.com hillaryous.com

S&W f(𝒘𝑏𝑒𝑟𝑛𝑖𝑒 ∙ 𝒘𝑆&𝑊) f(𝒘𝑑𝑟𝑢𝑚𝑝𝑓 ∙ 𝒘𝑆&𝑊) f(𝒘ℎ𝑖𝑙𝑙𝑎𝑟𝑦∙ 𝒘𝑆&𝑊)

Carebear f(𝒘𝑏𝑒𝑟𝑛𝑖𝑒 ∙ 𝒘𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟) f(𝒘𝑑𝑟𝑢𝑚𝑝𝑓 ∙ 𝒘𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟) f(𝒘ℎ𝑖𝑙𝑙𝑎𝑟𝑦 ∙ 𝒘𝑐𝑎𝑟𝑒𝑏𝑒𝑎𝑟)

JP Morgan f(𝒘𝑏𝑒𝑟𝑛𝑖𝑒 ∙ 𝒘𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛) f(𝒘𝑑𝑟𝑢𝑚𝑝𝑓 ∙ 𝒘𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛) f(𝒘ℎ𝑖𝑙𝑙𝑎𝑟𝑦 ∙ 𝒘𝐽𝑃𝑀𝑜𝑟𝑔𝑎𝑛)



Standard cross-features

• All values are regularized

Standard cross-features

• Frequent values are unregularized

• Infrequent modalities have random weights

A side-by-side comparison

2.3 1.1 3.7 -3.0 1.1 2.3

-1.4 2.3 -3.0 3.7 -1.4 3.7

-3.0 -3.0 5.9 1.1 2.3 5.9

3.7 5.9 -1.4 1.1 -3.0 -1.4

-1.4 2.3 -1.4 -1.4 3.7 5.9

-3.0 1.1 1.1 5.9 5.9 5.9

2.3 1.1

-1.4 2.3

-3.0 -3.0

3.7 5.9

-1.4 2.3

-3.0 1.1

2.3 -1.4 -3.0 3.7 -1.4 -3.0

1.1 2.3 -3.0 5.9 2.3 1.1



Handling continuous features

• Using a continuous feature directly only allows for linear interactions

• Finding the optimal transformation can be cumbersome



Gradient boosted decision trees

• Learn a decision tree to 

predict the clicks

• Learn a forest using boosting



Incorporating GBDT into a linear classifier

He et al. Practical Lessons from Predicting Clicks on Ads at Facebook. ADKDD

• Use the index of  the leaves as 

categorical features



Learning the parameters

• n = 10^9, p = 10^8

• Theory tells us that stochastic gradient methods should be used



Arising optimization questions

• How do you set the stepsize for each of  the 40 models?

• Does it change when we add features?

• How do you distribute the optimizer?

• Do all the datapoints have equal value?



Comparing the costs

• ML researcher: above 100k€ / year

• 16 CPUs - 64GB RAM: 5k€

• Win a factor 2 in 2 weeks



Further complications

• Increasing learning speed reduces delay

• But we still need to wait for the data

• And also for the log generation

• Learning time on a single machine at Criteo: 24 hours



A view of  the entire pipeline

Gathering data Generating logs Learning the model



A view of  the entire pipeline

Gathering data Generating logs Learning the model Gain



A view of  the entire pipeline

Gathering data Generating logs Learning the model Gain



Focusing on the right problem

• After a bit, the return is too small

• It is important to identify when and to focus on other aspects

• Remember that what matters is the whole system



Comparison of  optimization methods

Stochastic methods

• 𝑂 1/𝑇 convergence rate

• Cost independent of  N

• "Faster" early on

• 𝑂 1/𝑇 on the test error

Batch methods

• 𝑂 𝜌𝑇 convergence rate

• Cost linear in N

• "Faster" later on

• 𝑂 1/𝑇 on the test error



Real comparison of  optimization methods

Robustness trumps accuracy

Stochastic methods

• Careful with the stepsize!

• Hire a team to distribute it

• "Faster" early on

Batch methods

• Line-search and forget

• 10 lines of  code to distribute

• Initialize properly



Criteo's optimizer

• Distributed L-BFGS

• Distributed computation of  the gradients (107 examples/s)

• Update computation on a single node



Automatic hyperparameter optimization

• Number of  hyperparameters grows w/ complexity of  the model

• Optimizing them efficiently can have a huge impact

• Current approaches use GPs to model the test error as a function of  

their values



Noisy targets

• So far, we focused on a click prediction model

• It is probably not what we want

• The true goal is the (incremental) sale



Predicting sales

• There are far fewer sales than clicks (1 sale for 10 000 displays)

• They come after 30 days



Approximating 30-day sales

• We can use sales over a shorter period

• This leads to biased prediction

• What else can we do?



Modeling delayed feedback

• E = elapsed time since the click

• D = delay between the click and the sale

• Y = did the sale already occur?

• C = will a sale eventually occur?

• Build a joint model P(C, D)



Modeling delayed feedback

• P(C): probability that a sale will occur

• P(D|C=1): probability of  observing a delay D for occurring sales

• If  Y=0 after elapsed time E, then

P(C=1 | Y=0, E) = D>EP(C = 1, D)dD

Chapelle, O. Modeling delayed feedback in display advertising. KDD



From unsupervised to weakly supervised 
learning

• Unsupervised learning tries to learn about the input data

• Weakly supervised learning uses related tasks

• Long visits on the website

• Sales which do not follow a click

• Big data: unstructured targets rather than inputs

Michaeli et al. Semi-supervised single- and multi-domain regression with multi-domain training. Information and Inference


