Deep Reinforcement Learning

John Schulman
OpenAl Berkeley,

MLSS, May 2016, Cadiz

1Be:lrkeley Artificial Intelligence Research Lab

Agenda

Introduction and Overview

Markov Decision Processes

Reinforcement Learning via Black-Box Optimization
Policy Gradient Methods

Variance Reduction for Policy Gradients

Trust Region and Natural Gradient Methods

Open Problems

Course materials: goo.gl/5wsgbJ

goo.gl/5wsgbJ

Introduction and Overview

What is Reinforcement Learning?

» Branch of machine learning concerned with taking
sequences of actions

» Usually described in terms of agent interacting with a
previously unknown environment, trying to maximize
cumulative reward

action

TN

Agent Environment

N

observation, reward

Motor Control and Robotics

Robotics:
» Observations: camera images, joint angles
» Actions: joint torques

» Rewards: stay balanced, navigate to target locations,
serve and protect humans

Business Operations

» Inventory Management

» Observations: current inventory levels
» Actions: number of units of each item to purchase

» Rewards: profit
» Resource allocation: who to provide customer service to
first
» Routing problems: in management of shipping fleet,
which trucks / truckers to assign to which cargo

Games

A different kind of optimization problem (min-max) but still
considered to be RL.

Go (complete information, deterministic) — AlphaGo?

v

v

Backgammon (complete information, stochastic) —
TD-Gammon?®

Stratego (incomplete information, deterministic)

v

v

Poker (incomplete information, stochastic)

2David Silver, Aja Huang, et al. “Mastering the game of Go with deep neural networks and tree search”. In
Nature 529.7587 (2016), pp. 484-489.

3Gerald Tesauro. “Temporal difference learning and TD-Gammon”. In: Communications of the ACM 38.3
(1995), pp. 58-68.

Approaches to RL

Policy Optimization Dynamic Programming

RN / | \\

DFO / Evolution Policy Gradients Policy lteration Value Iteration

/ Q-Learning

Actor-Critic
Methods

What is Deep RL?

» RL using nonlinear function approximators

» Usually, updating parameters with stochastic gradient
descent

What's Deep RL?

Whatever the front half of the cerebral cortex does (motor and
executive cortices)

Frontal lobe

Parietal lobe

Computer
Vision

Occipital lobe

Markov Decision Processes

Definition

» Markov Decision Process (MDP) defined by (S, A, P),
where

» S: state space

» A: action space

» P(r,s'|s,a): a transition probability distribution
» Extra objects defined depending on problem setting

» u: Initial state distribution
» : discount factor

Episodic Setting

» In each episode, the initial state is sampled from p, and
the process proceeds until the terminal state is reached.
For example:

» Taxi robot reaches its destination (termination = good)
» Waiter robot finishes a shift (fixed time)
» Walking robot falls over (termination = bad)

» Goal: maximize expected reward per episode

Policies

» Deterministic policies: a = m(s)

» Stochastic policies: a ~ m(a|s)

» Parameterized policies: g

Episodic Setting

(s0)

(a0 | %0)

s1,ro ~ P(s1, 0 | S0, @)
ap ~7(a|s)

Sp, I~ P(52, n | 51731)

So ~ U

do ~ T

ar—i1~ 7T(3T—1 | 5T—1)

Sty fr—1 7~ P(ST | ST-1, 3T-1)

Objective:

maximize n(7), where

n(r) =Eln+n+--+rr_1|n]

Episodic Setting

Agent

Q/K@/‘\'...ﬁ

<>

Environment

Objective:

maximize n(m), where
n(r)=Eln+n+--+rr|n

Parameterized Policies

» A family of policies indexed by parameter vector § € R¢
» Deterministic: a = 7 (s, 0)
» Stochastic: 7(a|s,0)
» Analogous to classification or regression with input s,
output a. E.g. for neural network stochastic policies:
» Discrete action space: network outputs vector of

probabilities
» Continuous action space: network outputs mean and
diagonal covariance of Gaussian

Reinforcement Learning via Black-Box
Optimization

Derivative Free Optimization Approach

» Objective:
maximize E[R | 7 (-, 0)]

» View § — B — R as a black box

» lIgnore all other information other than R collected during
episode

Cross-Entropy Method

» Evolutionary algorithm

» Works embarrassingly well

Method Mean Score Reference
Nonreinforcement learning

Hand-coded 631,167 Dellacherie (Fahey, 2003)

Genetic algorithm 586,103 (Bohm et al,, 2004) " .
Reinforcement learning Istvan Szita and Andrés Lorincz. “Learning

Relational reinforcement ~50 Ramon and Driessens (2004) S . "

learning-+kernel-based regression Tetris using the noisy cross-entropy method”.
Policy iteration 3183 Bertsekas and Tsitsiklis (1996) . ;
Least squares policy ifesation 23000 Lagoudakis, Pars and In: Neural computation 18.12 (2006),
Littman (2002) —
Linear programming -+ Bootstrap 4274 Farias and van Roy (2006) pp. 2936-2941
Natural policy gradient 6800 Kakade (2001)
21252
CE+RL, constant noise 72,705
CE+RL, decreasing noise 348,895

Victor Gabillon, Mohammad Ghavamzadeh,
and Bruno Scherrer. “Approximate Dynamic
Programming Finally Performs Well in the
Game of Tetris”. In: Advances in Neural

INRIA Lille - Nord Europe, INRIA Lille - Team Sequel. INRIA Nancy - Grand Est, I H Kk
e Nt WAL s e gt Information Processing Systems. 2013

Approximate Dynamic Programming Finally
Performs Well in the Game of Tetris

Cross-Entropy Method

» Evolutionary algorithm
» Works embarrassingly well

» A similar algorithm, Covariance Matrix Adaptation, has
become standard in graphics:

Optimal Gait and Form for Animal Locomotion

Kevin Wampler* Zoran Popovié

University of Washington
A M N s S] = o=
A

Optimizing Walking Controllers for Uncertain Inputs and Environments
Jack M. Wang David J. Fleet Aaron Hertzmann

University of Toronto

Cross-Entropy Method

Initialize u € R?, 0 € R?
for iteration = 1,2,... do
Collect n samples of §; ~ N(u,diag(c))
Perform a noisy evaluation R; ~ 0;
Select the top p% of samples (e.g. p = 20), which we'll
call the elite set
Fit a Gaussian distribution, with diagonal covariance,
to the elite set, obtaining a new i, o.
end for
Return the final p.

Cross-Entropy Method

» Analysis: a very similar algorithm is an
minorization-maximization (MM) algorithm, guaranteed
to monotonically increase expected reward

» Recall that Monte-Carlo EM algorithm collects samples,
reweights them, and them maximizes their logprob

» We can derive MM algorithm where each iteration you
maximize) . log p(0;)R;

Policy Gradient Methods

Policy Gradient Methods: Overview

Problem:
maximize E[R | my]

Intuitions: collect a bunch of trajectories, and ...
1. Make the good trajectories more probable
2. Make the good actions more probable (actor-critic, GAE)
3. Push the actions towards good actions (DPG, SVG)

Score Function Gradient Estimator

» Consider an expectation E,. (. |g)[f(x)]. Want to compute
gradient wrt 6

VoEx[f(x)] = Vg /dx p(x | 0)f(x)

:/thuwvw)

= [ax pix Y205 e

= /dx p(x | 0)Vqlog p(x | 0)f(x)
= Ec[f(x)Vglog p(x | 0)].

> Last expression gives us an unbiased gradient estimator. Just
sample x; ~ p(x | 6), and compute g; = f(x;)Vglog p(x; | 6).

» Need to be able to compute and differentiate density p(x | 0)
wrt 0

Derivation via Importance Sampling

Alternate Derivation Using Importance Sampling

Exo [f(X)] = EXN9old

VoEso [f(X)] - EXN9old

VoEg [f(x

]|9 Ourq — x~Bo1a

- EXNO

old

p(x | 0)
O [Oot)” (X)}

[Vop(x | 0) N
L P(x | Ooia) ' }
Vop(x | 6) |9 bas (s)]

p(x | Ooia)

_VG Iog p(X | 0)‘9:9

()]

old

Score Function Gradient Estimator: Intuition

8i = f(Xi)Ve log P(Xi | ‘9)

» Let's say that f(x) measures how good the R—_—
sample x is. nlscgl‘i;r,ﬂi‘nii!us:;

» Moving in the direction g; pushes up the
logprob of the sample, in proportion to how
good it is

» Valid even if f(x) is discontinuous, and
unknown, or sample space (containing x) is a ™
discrete set

Score Function Gradient Estimator: Intuition

8= f(Xi)Ve log P(Xi | 9)

Score Function Gradient Estimator: Intuition

8i f(Xi)Ve log P(Xi | ‘9)

Score Function Gradient Estimator for Policies

» Now random variable x is a whole trajectory
T = (507 do, o, S1,d1, M1, .., ST-1,d7-1,I'T-1, ST)

VoE[R()] = E-[Volog p(7 | 0)R(7)]

> Just need to write out p(T | 0):

p(7 | 0) = p(s0) H[w ar | st,0)P(sti1,re | st, ar)]

T-1
log p(7 | 0) = log 11(s0) + Z[Iog m(ar | s¢,0) + log P(se41, re | s, at)]
t=0
T-1
Vologp(7|60) = Vo Y _ logm(a; | s, 0)
t=0
T—1
VoE, [R]=E. [RVy Y _logm(a;|s:,0)
t=0

> Interpretation: using good trajectories (high R) as supervised
examples in classification / regression

Policy Gradient—Slightly Better Formula

» Previous slide:
T-1 T-1
(Z rt) (Z Vo logm(a; | st, 9))]

t=0 t=0

V,E, [R] = E.

» But we can cut trajectory to t steps and derive gradient
estimator for one reward term ry.

VQE [I’t/] =K

t=0

t
3 Vitosr(a 5.

» Sum this formula over t, obtaining

[T—1 t/ T

VeE[RI=E |Y re Y Vylogn(a|s:,0)

| t=0 t=0
1

T-1

T—
Z Vo log m(a; | s¢,0) Z re

t=0 /=t

=K

~+

Adding a Baseline

v

Suppose f(x) >0, Vx
Then for every x;, gradient estimator g; tries to push up
it's density

v

We can derive a new unbiased estimator that avoids this
problem, and only pushes up the density for
better-than-average x;.

v

Vo Ex [f(X)] = VyE, [f(X) - b]
— K, [V log p(x | 8)(F(x) — b)]

v

A near-optimal choice of b is always E [f(x)]
(which must be estimated)

Policy Gradient with Baseline

» Recall
T-1 T-1
VeE. [R] = Z Iy Z Vo logm(a; | st,0)
t’'=0 t=t

» Using the E,, [Vg Iog m(a¢ | st,8)] = 0, we can show

VoE, [R] = Zve log 7 (ay | st, 0 Z re — b(st)
t=0 t=t’

for any “baseline” function b: § — R

» Increase logprob of action a; proportionally to how much
returns ZtT:_t,l re are better than expected

» Later: use value functions to further isolate effect of
action, at the cost of bias

» For more general picture of score function gradient
estimator, see stochastic computation graphs®.

4John Schulman, Nicolas Heess, et al. “Gradient Estimation Using Stochastic Computation Graphs”. [n:
Advances in Neural Information Processing Systems. 2015, pp. 3510-3522.

That’s all for today

Course Materials: goo.gl/5wsgbJ

goo.gl/5wsgbJ

Variance Reduction for Policy Gradients

Review (1)
> Process for generating trajectory
T = (S0, 30, 0, 51,31, My - -+, ST—1,3T—1,'T—1, ST)
so ~ 1(s0)
ap ~ m(aop | o)
si,r0 ~ P(s1, 10| s0,30)
ay ~ m(a1 | s1)

s, n ~ P(s2,r|s1,a1)

ar-1~m(ar—1|st-1)

st.rr—1~ P(st|srt-1,ar-1)

» Given parameterized policy m(a| s,), the optimization
problem is

maxgmize E:[R]|=(-]-0)]

where R=rg+nr +---+rr_1.

Review (I1)

» In general, we can compute gradients of expectations
with the score function gradient estimator

VOIExwp(x | 6) [f(X)] = IE:X [VG IOg p(X | e)f(X)]

» We derived a formula for the policy gradient

VoE- [R] =E, i Vo logm(a; | st,0) (Z ry — b(st)>]

t=0 t=t’

Value Functions

» The state-value function V™ is defined as:
V’T(s):E[r0+r1+r2+... ‘SOZS]

Measures expected future return, starting with state s

» The state-action value function Q™ is defined as
Q7(s,a)=E[n+n+n+...|ss=s,a = 3
» The advantage function A" is
A"(s;a) = Q" (s,a) — V™(s)

Measures how much better is action a than what the
policy © would’ve done.

Refining the Policy Gradient Formula

» Recall
T-1 T-1
VoE: [R] = Z Vo logm(at | st, 0 (Z re — b(st)
t=0 t=t/
T-1
E; [Vglogm(at | st,0 (Z rt/—bst>
t=0 t=t’
T-1 T-1
Eso .ar VG IOg ’ﬂ'(at | Stae)ErtsHl.‘.sT [(Z ryr — b St >]
t=0 t=t
T-1
Es...ac [Vologm(at | st,0)Ers,.,...sr [@Q7(st, at) — b(st)]]
t=0

» Where the last equality used the fact that

T-1
]Ertsprl...sr [Z rt’] — Qﬂ(sta at)

t=t’

Refining the Policy Gradient Formula

» From the previous slide, we've obtained

VoE, [R] = E.

S Valogn(ac | 56)(Q"(s:.a0) - b(st))]

t=0

» Now let's define b(s) = V™(s), which turns out to be
near-optimal®. We get

VoE, [R] = E.

T-1
Z Vo logm(a; | s, 0)A™(st, at)]

t=0

» Intuition: increase the probability of good actions
(positive advantage) decrease the probability of bad ones
(negative advantage)

5Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. “Variance reduction techniques for gradient
estimates in reinforcement learning”. In: The Journal of Machine Learning Research 5:{2004), pp. 1471=1530.

Variance Reduction

» Now, we have the following policy gradient formula:

T-1
VoE. [R] = E, Z Vo logm(a; | s, 0)A™(st, ar)

t=0

» A™ is not known, but we can plug in a random variable
A:, an advantage estimator

» Previously, we showed that taking
Ai=r+ reg1 4 fego + - — b(st)

for any function b(s;), gives an unbiased policy gradient
estimator. b(s;) ~ V7(s;) gives variance reduction.

The Delayed Reward Problem

» One reason RL is difficult is the long delay between action
and reward

—— SMOKE CRACK
— 60 TO SCHOOL [
H V_’_’_/ﬁ

0 50 100 150 200 250 300

The Delayed Reward Problem

» With policy gradient methods, we are confounding the
effect of multiple actions:

Ac=ri+ ra+ reo 4o — b(st)

mixes effect of a;, a;11, a2, - -

> SNR of A, scales roughly as 1/ T

» Only a; contributes to signal A™(s;, a;), but
at41, at42, . .. contribute to noise.

Var. Red. Idea 1: Using Discounts

» Discount factor v, 0 < v < 1, downweights the effect of
rewars that are far in the future—ignore long term
dependencies

» We can form an advantage estimator using the
discounted return:

A\’ty :\rt +’7rt+l +'72rt+2 + . /—b(st)

TV
discounted return

reduces to our previous estimator when v = 1.

» So advantage has expectation zero, we should fit baseline
to be discounted value function

VI (s) =E. [n+yn+n+...|s=s]

» A} is a biased estimator of the advantage function

Var. Red. ldea 2: Value Functions in the Future

» Another approach for variance reduction is to use the
value function to estimate future rewards

re+ g1+ oo+ use empirical rewards
=

re + V(se11) cut off at one timestep

re+ rev1 + V(sti2) cut off at two timesteps

Adding the baseline again, we get the advantage
estimators

Ar = re+ V(sep1) — V(se) cut off at one timestep

A =r+ rer1 + V(sei2) — V(se) cut off at two timesteps

Combining Ideas 1 and 2

» Can combine discounts and value functions in the future, e.g.,
At = re + vV (st+1) — V(st), where V approximates
discounted value function V™7,

» The above formula is called an actor-critic method, where
actor is the policy 7, and critic is the value function V.°

» Going further, the generalized advantage estimator’
AT =6, 4+ (YA)0e41 + (YA 0rga + . ..
where 8 = re + vV (st41) — V(st)
» Interpolates between two previous estimators:
A=0: re+vV(sty1) — V(st) (low v, high b)
A=1: rn+vr1+rgo+ - — V(st) (low b, high v)

Vijay R Konda and John N Tsitsiklis. “Actor-Critic Algorithms.” In: Advances in Neural Information
Processing Systems. Vol. 13. Citeseer. 1999, pp. 1008-1014.

7 John Schulman, Philipp Moritz, et al. “High-dimensional continuous control using generalized advantage
estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

Alternative Approach: Reparameterization

» Suppose problem has continuous action space, a € R
» Then %Q’r(s, a) tells use how to improve our action

» We can use reparameterization trick, so a is a
deterministic function a = f(s, z), where z is noise. Then,

VoE- [R] = VoQ™ (50, a0) + Vo Q™ (51, a1) + . ..

» This method is called the deterministic policy gradient®

» A generalized version, which also uses a dynamics model,
is described as the stochastic value gradient®

8David Silver, Guy Lever, et al. “Deterministic policy gradient algorithms”. [n: /CML. 2014;
Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv preprint
arXiv:1509.02971 (2015).

9Nicolas Heess et al. “Learning continuous control policies by stochastic value gradients”. In: Advances in
Neural Information Processing Systems. 2015, pp. 2926-2934.

Trust Region and Natural Gradient
Methods

Optimization Issues with Policy Gradients

» Hard to choose reasonable stepsize that works for the
whole optimization
» we have a gradient estimate, no objective for line search
» statistics of data (observations and rewards) change
during learning
» They make inefficient use of data: each experience is only
used to compute one gradient.

» Given a batch of trajectories, what's the most we can do
with it?

Policy Performance Function

» Let n(7) denote the performance of policy 7
n(m) = E- [R|7]
» The following neat identity holds:
n(7) = n(m) + Erwz [A™(s0, a0) + A™(s1,a1) + A™(s2, 22) + - . .|

» Proof: consider nonstationary policy mgmimo, . ..

n(xxw--) =n(rrm---)
+n(Frm-) —n(rrm---)
+n(Frm-) —n(Frm---)
+ (77w) —n(FfFm---)
+..

» tth difference term equals A™ (s, a;)

Local Approximation

» We just derived an expression for the performance of a policy 7
relative to 7

n(7) = n(7) + Erz [A™(s0,30) + A" (s1,a1) + .. .]
= 1(7) + Eg ot [Bag oo [AT (50, 30) + AT (s1,01) + ...]]
» Can't use this to optimize 7 because state distribution has
complicated dependence.

> Let's define L, the local approximation, which ignores change in
state distribution—can be estimated by sampling from 7

Lﬂ(ﬁ') = SOOONﬂ— [EQOOQN;T [AW(S(), ao) + AW(Sl, 31) + ...]]

z_: Eauz [A™(st, a¢)]

t=0
T-1 ~
— E]E |:7T(at ‘ St)Aﬂ—(St at):|
So: ar
e e m(a | st) 7
T-1 .
Zﬂa”St AT (s, at)
T~7T — m at | St et

Local Approximation

> Now let's consider parameterized policy, 7(a| s,). Sample with
Oo1q, now write local approximation in terms of 6.

t=|

at | St) 0
= L901d Eg. lz Eavo |:at|5t701d)A (st, at)”

L. (%) =Eq,

> Ly, (0) matches n(0) to first order around 04.

Vorm(a: | st,
VoL, (6) ZEM[om(ac | s ’A9<st,at)H
=0

o=, = Fox 7(ac 5. 0oa)

-1
=E

S0:00

Eavp [Vologm(a | st 0)A%(s:, at)]]
t=0

= V(ﬂ?(e)’g:gold

MM Algorithm

» Theorem (ignoring some details)*®

n(0) = Loyy(0) — Cmax Dy [7(- | bora, s) [| 7(- [6, 5)]
——

[J/

local approx. to n

~
penalty for changing policy

» If O51a — Onew improves lower bound, it's guaranteed to
improve 7

10 john Schulman, Sergey Levine, et al. “Trust Region Policy Optimization”. In: arXiv preprint
arXiv:1502.05477 (2015).

Review

» Want to optimize 7(#). Collected data with policy
parameter 6,4, now want to do update

» Derived local approximation Ly, (6)

» Optimizing KL penalized local approximation givesn
guaranteed improvement to 7

» More approximations gives practical algorithm, called
TRPO

TRPO—Approximations

» Steps:
» Instead of max over state space, take mean
» Linear approximation to L, quadratic approximation to
KL divergence
» Use hard constraint on KL divergence instead of penalty

» Solve the following problem approximately

maximize Ly, (6)
subject to Dgy[foq || 0] <0

» Solve approximately through line search in the natural
gradient direction s = F~1g

» Resulting algorithm is a refined version of natural policy
gradient!

1Sham Kakade. “A Natural Policy Gradient.” In: NIPS. vol. 14. 2001, pp. 1531-1538.

Empirical Results: TRPO + GAE

» TRPO, with neural network policies, was applied to learn
controllers for 2D robotic swimming, hopping, and
walking, and playing Atari games!?

» Used TRPO along with generalized advantage estimation
to optimize locomotion policies for 3D simulated robots®?

12 j6hn Schulman, Sergey Levine, et al. “Trust Region Policy Optimization”. In: arXiv preprint
arXiv:1502.05477 (2015).

13 John Schulman, Philipp Moritz, et al. “High-dimensional continuous control using generalized advantage
estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

Putting In Perspective
Quick and incomplete overview of recent results with deep RL
algorithms
» Policy gradient methods
» TRPO + GAE
» Standard policy gradient (no trust region) + deep nets

+ parallel implementation#
» Repar trick!®

» Q-learning'® and modifications!’
» Combining search + supervised learning'®

14V, Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1312.5602 (2013).

15 Nicolas Heess et al. “Learning continuous control policies by stochastic value gradients”. In: Advances in
Neural Information Processing Systems. 2015, pp. 2926-2934; Timothy P Lillicrap et al. “Continuous control with
deep reinforcement learning”. In: arXiv preprint arXiv:1509.02971 (2015).

16y Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: arXiv preprint arXiv:1312.5602 (2013).

17Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Network Architectures for Deep Reinforcement
Learning”. In: arXiv preprint arXiv:1511.06581 (2015); Hado V Hasselt. “Double Q-learning”. In: Advances in
Neural Information Processing Systems. 2010, pp. 2613-2621.

18X, Guo et al. “Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning”. In:
Advances in Neural Information Processing Systems. 2014, pp. 3338-3346; Sergey Levine et al. “End-to-end
training of deep visuomotor policies”. In: arXiv preprint arXiv:1504.00702 (2015); lgor Mordatch et al.
“Interactive Control of Diverse Complex Characters with Neural Networks". In: Advances in Neural Information
Processing Systems. 2015, pp. 3114-3122.

Open Problems

What's the Right Core Model-Free Algorithm?

» Policy gradients (score function vs. reparameterization,
natural vs. not natural) vs. Q-learning vs. derivative-free
optimization vs others

» Desiderata

scalable

sample-efficient

robust
learns from off-policy data

v

v

v

v

Exploration

» Exploration: actively encourage agent to reach unfamiliar
parts of state space, avoid getting stuck in local
maximum of performance

» Can solve finite MDPs in polynomial time with
exploration®®

» optimism about new states and actions
» maintain distribution over possible models, and plan
with them (Bayesian RL, Thompson sampling)

» How to do exploration in deep RL setting? Thompson
sampling?®, novelty bonus?!

19 Alexander L Strehl et al. “PAC model-free reinforcement learning”. In: Proceedings of the 23rd international
conference on Machine learning. ACM. 2006, pp. 881-888.

20jan Osband et al. “Deep Exploration via Bootstrapped DQN". . In: arXiv preprint arXiv:1602.04621 (2016).

21Bradly C Stadie, Sergey Levine, and Pieter Abbeel. “Incentivizing Exploration In Reinforcement Learning With
Deep Predictive Models”. [n: arXiv preprint arXiv:1507.00814 (2015).

Hierarchy

- ' %
== o
LoD

— o o '»
task | ... task2 ... task3 ... task4 ... |0 timesteps / day
_ e, e e e e e e = = = = = =

walk to x ... fetch objecty ... say z0l hz: |0° time steps per day

Y N

footstep planning: |hz: 10° timesteps / day

torque control: 100hz: 107 timesteps /day

More Open Problems

» Using learned models

» Learning from demonstrations

The End

Questions?

	Introduction and Overview
	Markov Decision Processes
	Reinforcement Learning via Black-Box Optimization
	Policy Gradient Methods
	Variance Reduction for Policy Gradients
	Trust Region and Natural Gradient Methods
	Open Problems

