Machine learning for Dynamic Social Network Analysis

Manuel Gomez Rodriguez

Max Planck Institute for Software Systems

IJCAI TUTORIAL, AUGUST 2017

Many discrete events in continuous time

Variety of processes behind these events

Events are (noisy) observations of a variety of complex dynamic processes...

A user gains recognition in Quora

Video becomes viral in Youtube

FAST

SLOW

...in a wide range of temporal scales. 3

Example I: Idea adoption/viral marketing

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

Example II: Information creation & curation

Example III: Learning trajectories

1st year computer science student

Detailed event traces

Previously: discrete-time models & algorithms

Discrete in e no del artificielly introduce epochs:

- w ng is each epoch? Dura is very heterogeneous.
- 2 now to aggregate events within an epoch?
- 3. What if no event within an epoch?
- 4. Time is treated as index or conditioning variable, not easy to deal with time-related queries.

Outline of the Seminar

REPRESENTATION: TEMPORAL POINT PROCESSES

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

Next

APPLICATIONS: MODELS

- 1. Information propagation
- 2. Information reliability
- 3. Knowledge acquisition

APPLICATIONS: CONTROL

- 1. Activity shaping
- 2. When-to-post

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Temporal point processes

Temporal point process:

A random process whose realization consists of discrete events localized in time

Model time as a random variable

Likelihood of a timeline: $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$

Problems of density parametrization (I)

It is difficult for model design and interpretability:

- 1. Densities need to integrate to 1 (i.e., partition function)
- 2. Difficult to combine timelines

Problems of density parametrization (II)

Difficult to combine timelines:

Sum of random processes

$$f^*(t) \neq f_1^*(t) + f_2^*(t)$$

$$f^*(t) \not= f_1^*(t) \not= f_2^*(t)$$

Intensity function

Intensity:

Probability between [t, t+dt) but not before t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \quad \Longrightarrow \quad \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Observation: $\lambda^*(t)$ It is a rate = # of events / unit of time

Advantages of intensity parametrization (I)

$$\lambda^*(t_1) \lambda^*(t_2) \lambda^*(t_3) \lambda^*(t) \exp\left(-\int_0^T \lambda^*(\tau) d\tau\right)$$

$$\langle w, \phi^*(t_1) \rangle \qquad \langle w, \phi^*(t_3) \rangle \qquad \exp\left(-\int_0^T \langle w, \phi^*(\tau) \rangle d\tau\right)$$

Suitable for model design and interpretable:

- 1. Intensities only need to be nonnegative
- 2. Easy to combine timelines

Advantages of intensity parametrization (II)

Easy to combine timeline:

Sum of random processes

$$\lambda^*(t) = \lambda_1^*(t) + \lambda_2^*(t)$$

$$\lambda^*(t) \not \times \lambda_1^*(t) \times \lambda_2^*(t)$$

Relation between f*, F*, S*, λ*

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Poisson process

Intensity of a Poisson process

$$\lambda^*(t) = \mu$$

Observations:

- 1. Intensity independent of history
- 2. Uniformly random occurrence
- 3. Time interval follows exponential distribution

Fitting a Poisson from (historical) timeline

$$\lambda^*(t_1) \lambda^*(t_2) \lambda^*(t_3) \exp \left(-\int_0^T \lambda^*(\tau) d\tau\right)$$
 $\mu \qquad \mu \qquad \exp \left(-\int_0^T \lambda^*(\tau) d\tau\right)$
 $\exp \left(-\mu T\right)$

$$\mu^* = \underset{\mu}{\operatorname{argmax}} 3 \log \mu - \mu T = \frac{3}{T}$$

Sampling from a Poisson process

We would like to sample: $t \sim \mu \exp(-\mu(t-t_3)) + t_3$

We sample using inversion sampling:

$$F_{t}(t) = 1 - \exp\left(-\mu(t - t_{3})\right) \implies t \sim \frac{1}{\mu} \log(1 - u) + t_{3}$$

$$\mathbb{P}\left(F_{t}^{-1}(u) \leq t\right) = \mathbb{P}\left(u \leq F_{t}(t)\right) = F_{t}(t)$$

$$F_{\!\scriptscriptstyle u}\!(u)\!=\!u$$

Inhomogeneous Poisson process

Intensity of an inhomogeneous Poisson process

$$\lambda^*(t) = g(t) \geqslant 0$$

Observations:

1. Intensity independent of history

Fitting an inhomogeneous Poisson

maximize
$$\sum_{i=1}^{n} \log g(t_i) - \int_{0}^{T} g(\tau) d\tau$$
 Design $g(t)$ such that max. likelihood is convex (and use CVX)

Nonparametric inhomogeneous Poisson process

Positive combination of (Gaussian) RFB kernels:

Sampling from an inhomogeneous Poisson

Thinning procedure (similar to rejection sampling):

1. Sample t from Poisson process with intensity μ

$$t \sim -\frac{1}{\mu} \log(1-u) + t_3$$
 Inversion sampling

2. Generate $u_2 \sim Uniform(0,1)$
3. Keep the sample if $u_2 \leq g(t)/\mu$ Keep sample with prob. $g(t)/\mu$

Terminating (or survival) process

Intensity of a terminating (or survival) process

$$\lambda^*(t) = g^*(t)(1 - N(t)) \ge 0$$

Observations:

1. Limited number of occurrences

Self-exciting (or Hawkes) process

Intensity of self-exciting (or Hawkes) process:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$
$$= \mu + \alpha \kappa_{\omega}(t) \star dN(t)$$

Observations:

- 1. Clustered (or bursty) occurrence of events
- 2. Intensity is stochastic and history dependent

Fitting a Hawkes process from a recorded timeline

$$\lambda^*(t_1)\lambda^*(t_2) \lambda^*(t_3) \cdots \lambda^*(t_n) \exp\left(-\int_0^T \lambda^*(\tau) d\tau\right)$$

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$

Maximum likelihood

Sampling from a Hawkes process

Thinning procedure (similar to rejection sampling):

1. Sample t from Poisson process with intensity μ_3

$$t \sim -\frac{1}{\mu_3} \log(1-u) + t_3$$
 Inversion sampling

2. Generate $u_2 \sim Uniform(0,1)$
3. Keep the sample if $u_2 \leq g(t)/\mu_3$ Keep sample with prob. $g(t)/\mu_3$

Summary

Building blocks to represent different dynamic processes:

Poisson processes:

$$\lambda^*(t) = \lambda$$

Inho

Tern

We know **how to fit** them and **how to sample** from them

$$\sigma(t) = g_{\parallel}(t)(1 - IV(t))$$

Self-exciting point processes:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Mutually exciting process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i)$$

Mutually exciting terminating process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_{\omega}(t - t_i) \right)$$

Representation: Temporal Point Processes

- 1. Intensity function
- 2. Basic building blocks
 - 3. Superposition
- 4. Marks and SDEs with jumps

Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of discrete marked events localized in time

Independent identically distributed marks

Distribution for the marks:

$$x^*(t_i) \sim p(x)$$

Observations:

- 1. Marks independent of the temporal dynamics
- 2. Independent identically distributed (I.I.D.)

Dependent marks: SDEs with jumps

Marks given by stochastic differential equation with jumps:

$$x(t+dt)-x(t)=dx(t)=\underbrace{f(x(t),t)dt}_{\text{T}}+\underbrace{h(x(t),t)dN(t)}_{\text{T}}$$
 Observations: Drift Event influence

- 1. Marks dependent of the temporal dynamics
- Defined for all values of t

Dependent marks: distribution + SDE with jumps

Distribution for the marks:

$$x^*(t_i) \sim p\left(\left.x^*\right| x(t)\right) \implies dx(t) = \underbrace{f(x(t),t)dt}_{\text{Drift}} + \underbrace{h(x(t),t)dN(t)}_{\text{Event influence}}$$

- 1. Marks dependent on the temporal dynamics
- 2. Distribution represents additional source of uncertainty

Mutually exciting + marks

Marks affected by neighbors

$$dx(t) = \underbrace{f(x(t),t)dt}_{\text{T}} + \underbrace{g(x(t),t)dM(t)}_{\text{Neighbor influence}}$$

REPRESENTATION: TEMPORAL POINT PROCESSES

- 1. Intensity function
- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

APPLICATIONS: MODELS

- 1. Information propagation
- 2. Information reliability
- 3. Knowledge acquisition

APPLICATIONS: CONTROL

- 1. Activity shaping
- 2. When-to-post

Next