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Many discrete events in continuous time
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Variety of processes behind these events

Events are (noisy) observations of a
variety of complex dynamic processes...

a Product reviews
News spread 2';?3?&?5 n A user gains
In Twitter

recognition in
Quora

Article

gideo -

ecomes vira c .

. \X} creation in
in Youtube Wikipedia

FAST

| )
...in @ wide range of temporal scales.




Example I: Idea adoption/viral marketing

Smeans D Christine ;
D follows S
3.00pm i

3.25pm

Beth
3.27pm

David
4.15pm

Friggeri et al., 2014
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They can have an impact

in the off-line world Click and elect: how fake news helped 4
Donald Trump win a real election



Example ll: Information creation & curation

4 oS
< *’ K) From Wikipedia, the free encyciopedia
7
X W
) Q

4 "Barack" and "Obama" redirect here. For his father, see Barack Obama Sr. For other uses of "Barack", see Barack (disambiguation).
‘A 4‘ (disambiguation). . g .
e e s 1 is a|Kenyan|politician
W g current President of the Unite B k Ob . R h t
S . DArAC ama: REVI1S1OoN Nisto / \

was president of the Hanvard (03:41, 28 November 2016 Ranze (talk | contribs) . . (301,105 bytes) (+18) .. (E

WIKII;EDI A S(Z:::;';:;‘Z.QYZ"ZDS‘;: 03:32, 28 November 2016 Xin Deui (talk | contribs) . . (301,087 bytes) (-68) . . ( x ¢ pOSSIbIe Vandahsm by M[_ M2016

Die freie Enzyklopadie 00:57, 28 November 2016 SporkBot (talk | contribs) m . . (301,155 bytes) (-37)
07:08, 27 November 2016 Saiph121 (talk | contribs) . . (301,192 bytes) (+25) .

Barack Obama 03.21 ’ 20 September 201 6 h

= P

is an American politician .
@ Addition
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) S §

) S o g

Upvote 150

Moving to Australia Working in Australia  Study abroad in Australia 4 ryinall you
However, Ifirmly believe that there are definitely more pros
Australia but still I bel  fewsy

What are the pros and cons of living in Australia? ~

Hope it helps! )

v

Possible Challenges
# Answer | Request v * v M Sharma, Lived in Australia as Migrant, Student, Worker,
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Example Ill: Learning trajectories

: 1st year computer science student

Introduction to programming
Discrete math Sta

| Project presentation el‘f[o
Graph T Powerpoint W
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Logic Private
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If ... else
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Detailed event traces

DETAILED TRACES OF ACTIVITY

|
| ‘? Manuel Gomez Rodriguez
Warren Buffett ! m n
/ 1

Pique-Longue, French Pyrenees

Warren is in the house. | Easter2017

The availability of event traces
boosts a new generation of
data-driven models and algorithms
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v
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Previously: discrete-time models & algorithms

—o
—>.

hat if no event within an epoch?

4. Time is treated as index or conditioning variable, not easy

to deal with time-related queries. 8



Outline of the Seminar

REPRESENTATION: TEMPORAL POINT PROCESSES

1. Intensity function

2. Basic building blocks

3. Superposition

4. Marks and SDEs with jumps

APPLICATIONS: MODELS

1. Information propagation
2. Information reliability
3. Knowledge acquisition

APPLICATIONS: CONTROL

1. Activity shaping
2. When-to-post

Slides/references: learning.mpi-sws.org/ijcai-2017-tutorial



Representation:
Temporal Point Processes

1. Intensity function

10



Temporal point processes

Temporal point process:
A random process whose realization consists of
discrete events localized in time

Discrete events

2N

— time

History, 7 (t) dN(t) €{0,1}  Dirac delta function

\ v
Formally: N(t) = f(f dN(s) By dN(t) = Z O(t —t;)dt
t; EH(t)



Model time as a random variable

densny
Prob. between [t t+dt) f* = f(t|H(t))
| |
~ : : '
° | T T V(-\ | :tlme
t t+4 dt =T
\ ' J S*(t)

Prob. not before t

History, H(t)

Likelihood of a timeline:  f"(t1) f"(t2) f7(t3) f*(t) S*(T) 12



Problems of density parametrization (l)

|
|
"~ I
«® |

(t1) (t) f *'(t) .
R 5
th ts t

exp(w, lP (t1)) / exp(w, " (t3))

exp{w, " (@)

exp{w, ¢ (t2)) Z exp(w, " (1)) - Jt Z
Z

15)

It is difficult for model design and interpretability:

1. Densities need to integrate to 1 (i.e., partition function)

2. Difficult to combine timelines .



Problems of density parametrization (ll)

Difficult to combine timelines:

I f1*(t)
~ |
D9t %
. ¥ £
S B S X SR
()

P ?7? ?27?°? Y9

@) & 70+ @)
Sum of random processes [> @ i 1 @ 2 @ 14
fr( @) k f(t




Intensity function

density
Prob. between [t t+dt) /f*( (t’H(t))
- :
0 i1 1 r/’\ .
tt+dt t="T
\ ' J S*(t>
History, H(t) Prob. not before t
Intensity:
Probability between [t, t+dt) but not before t
) £(t)dt
A (t)dt = @) >0 = \'(t)dt=E[dN(t)|H(t)]

Observation: A*(t) Itisarate =# of events / unit of time s



Advantages of intensity parametrization (l)

fr(t)  f*(t2) £*( S7(T)

:irmr

N (1) A" (82) N*(£3) \*(2) exp ( / () dT>

W, 4’*(4 w, qj(tg» \ \

(w, Qb*(tz)) (w, d*(£)) exp (‘ j() (w, ¢*(T))df)

Suitable for model design and interpretable:

1. Intensities only need to be nonnegative
2. Easy to combine timelines 16



Advantages of intensity parametrization (ll)

Easy to combine timeline:

o B B

+
S SR S &

X0
P77 ??? T?°

N(8) = X)) + A W
Sum of random processes [> : )X ” " 17
NOF SHORE RN




Relation between f*, F*, S*, A*

) f() ) ex
1-s5@) | |1-F ) 0 p(—f, A

Central quantity
we will use!

:
>
4]
|
%
(N
>~
S
ISH
)
N—
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Representation:
Temporal Point Processes

2. Basic building blocks

19



Poisson process

time

Intensity of a Poisson process

() = W
Observations:

1. Intensity independent of history

2. Uniformly random occurrence

3. Time interval follows exponential distribution 20



Fitting a Poisson from (historical) timeline

- : () () () )\*(t) = L :
- I ! time
(3] 15) t3 t="T
T
A* (tl) )‘*(tZ) ¥ (tg) exp (/ A (1) dT)
S N S |
g SR exp (—p T)
Maximum
likelihood N7
p*=argmax 3logp — puT = El
T 21

1



Sampling from a Poisson process

We would like to sample: t ~ pexp(—pu(t —t3)) +t;

We sample using inversion sampling: Uni form(0,1)
{
F(t)=1—exp(-pu(t—ts)) ot ~—— log(l—u)+ts
\ Y I
F(u)
P(F (u)< t) = P(us E(t)) = K(t)



Inhomogeneous Poisson process

5 | Siliia L

to tz e t:T

Intensity of an inhomogeneous Poisson process

A (t) = g(t) =2 0

Observations:

1. Intensity independent of history

23



Fitting an inhomogeneous Poisson

MY tTe L

2

«
t1 tyts e L
A" (L) A" (t2) A™ (t3) = A*(tn) exp</ X () dT)
S RS |
g(t ) g(t ) g(tS) g(tn) T
1 2 exp (/ g(’r) dr )
Maximum 0

likelihood ~_

Design g(t) such that

mangnze log g tz / g(r makx. likelihood is convex
g (and use CVX)



Nonparametric inhomogeneous Poisson process

H

Positive combination of (Gaussian) RFB kernels:

j /

-y *

PN _ N ()
”’ \ 7~ ~ .
7 ~ - N
’ 4 N
[ / ‘ ‘~
‘_I»_ - : - Sy
tl t2 ------ t_] ...... t s
a (0 TITIT a ......



Sampling from an inhomogeneous Poisson

t1  to t3 t="1T

Thinning procedure (similar to rejection sampling):

1. Sample ¢t from Poisson process with intensity [

Uniform(0,1)
1, Inversion
b~ — L 10g(1 _ U) + t4 sampling
v
2. Generate wuo ~ Uniform(0,1) }

Keep sample with

3. Keep the sampleif uz < g(%) /,u prob. g(t)/ p



Terminating (or survival) process

Intensity of a terminating (or survival) process
A*(t)=g" () (1 - N(t)) =0

Observations:

1. Limited number of occurrences

27



Self-exciting (or Hawkes) process

tl t2t3 ,t t:T

|
History, # (t) | N

Triggering kernel

Intensity of self-exciting [ \
(or Hawkes) process: A(t) = p+ « Ztie’H(t) Kew(t — t;)

= 1+ aky(t) * dN(t)
Observations:

1. Clustered (or bursty) occurrence of events

2. Intensity is stochastic and history dependent N



Fitting a Hawkes process from a recorded timeline

Ao = A*(t3)
&~

N =ptad, o relt—t)

Maximum

likelihood <<\v/?7

o n T The makx. likelihood
maximize Z log \*(t;) — / A (1) dr is jointly convex
0

p, e i=1 in itand O



Sampling from a Hawkes process

t1 tats3 t="T

Thinning procedure (similar to rejection sampling):

1. Sample ¢ from Poisson process with intensity [i;

Uniform(0,1)
1, Inversion
b~ — L 10g(1 _ U) + t4 sampling
K3
2. Generate wuo ~ Uniform(0,1) }

Keep sample with

3. Keep the sample if up < g(t)/,u3 prob. g(t)/ ,

30



Summary

Building blocks to represent different dynamic processes:

Poisson processes: | ® |
A () = A ' | =

Inho

We know how to fit them o
and how to sample from them

Tern

AT =9 LT = IV (1)) L '

Self-exciting point processes:

M) =pta > kolt—t) '4?\f+\+\ 3

ti€H(t) ' ' 31




Representation:
Temporal Point Processes

3. Superposition

32



Mutually exciting process

| |
| |
l N N :
| |
Bob (™ ! = !
- l t1 tots :
A ' J I
|
T : History Hb(t) |
| |
. 0 I Q@ 00 |
Christine | N I
| t1 tot3 |
|

|
History (%)

Clustered occurrence affected by neighbors
N =ptad , ., 6et—t)
R t — tz'
N 6 Ztié H(t) ( )

time

—, time

33



Mutually exciting terminating process

1

| |
| |
| |
| I
Bob (™ ! ! time
- I t 1
| |
| |
T | |
| 00 I
| |
Christine n I ? 1.
} L } :tlme
I t1 tots I
\

|
History (%)

Clustered occurrence affected by neighbors

X)) =1-NW)(s) +B_, _,, , "wlt =) )

34



Representation:
Temporal Point Processes

4. Marks and SDEs with jumps

35



Marked temporal point processes

Marked temporal point process:
A random process whose realization consists of discrete
marked events localized in time

- L@ 0 -~ N@t)e{0}YU ZT i
- ' |,
t1 ta 3 t t=T
z(t)] ® o !
l O t2 t3 _
time
y(1) ] o
l " & 6 { time
\ J
' 36

History, #(t)



Independent identically distributed marks

»  time

Distribution for the marks:

z*(t;) ~ p(x)
Observations:

1. Marks independent of the temporal dynamics

2. Independent identically distributed (I.1.D.)
37



Dependent marks: SDEs with jumps

time

History, H(t) <
Marks given by stochastic differential equation with jumps: l

a(t + dt)— z(t) = da(t) = f(x(t), t)dt + h(z(t), )AN (t),
| |

Observations: Drift Event influence

1. Marks dependent of the temporal dynamics

2. Defined for all values of t ¥



Dependent marks: distribution + SDE with jumps

o (1) [
i o
Histor'y, H(t) <
Distribution for the marks: ‘l'
T*(t;) ~p(z*|z(t)) & dx(t) z‘f(x(t), t)dt,+‘h(:v(t),t)dN(t)’
Observations: D!ift Event in'ﬂuence

1. Marks dependent on the temporal dynamics
2. Distribution represents additional source of uncertainty



Mutually exciting + marks

= -’E(t)‘
h 9 e -
T é ” y - » time
Christine : :
n ! ?cp C Mpeforuz®t
| i | |
t a2 I3 t t=T

Marks affected by neighbors
dz(t) = f(x(t), t)di + g(z(t), t)dM (t)

' ' 40

Drift Neighbor influence



REPRESENTATION: TEMPORAL POINT PROCESSES

1. Intensity function

2. Basic building blocks

3. Superposition

4. Marks and SDEs with jumps

APPLICATIONS: MODELS

1. Information propagation Next
2. Information reliability
3. Knowledge acquisition

APPLICATIONS: CONTROL

1. Activity shaping
2. When-to-post

Slides/references: learning.mpi-sws.org/ijcai-2017-tutorial
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